upd xlib.torch.model

This commit is contained in:
iperov 2021-12-17 12:24:45 +04:00
parent 84365372c8
commit 77cbb05db4
3 changed files with 366 additions and 0 deletions

View file

@ -0,0 +1,139 @@
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
def _make_divisible(v: float, divisor: int, min_value = None) -> int:
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class SqueezeExcitation(nn.Module):
def __init__( self, in_ch: int, squeeze_channels: int, activation = nn.ReLU, scale_activation = nn.Sigmoid):
super().__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(in_ch, squeeze_channels, 1)
self.fc2 = nn.Conv2d(squeeze_channels, in_ch, 1)
self.activation = activation()
self.scale_activation = scale_activation()
def forward(self, input):
scale = self.avgpool(input)
scale = self.fc1(scale)
scale = self.activation(scale)
scale = self.fc2(scale)
scale = self.scale_activation(scale)
return scale * input
class ConvNormActivation(nn.Sequential):
def __init__(self, in_ch: int, out_ch: int, kernel_size: int = 3, stride: int = 1, padding = None, groups: int = 1, norm_layer = nn.BatchNorm2d, activation_layer = nn.ReLU,) -> None:
if padding is None:
padding = (kernel_size - 1) // 2
layers = [torch.nn.Conv2d(in_ch, out_ch, kernel_size, stride, padding, groups=groups, bias=norm_layer is None)]
if norm_layer is not None:
layers.append(norm_layer(out_ch))
if activation_layer is not None:
layers.append(activation_layer())
super().__init__(*layers)
self.out_ch = out_ch
class InvertedResidual(nn.Module):
def __init__(self, in_ch: int, mid_ch: int, out_ch: int, kernel: int, stride: int, use_se: bool,
hs_act : bool, width_mult: float = 1.0,
norm_layer = None,):
super().__init__()
mid_ch = _make_divisible(mid_ch * width_mult, 8)
out_ch = _make_divisible(out_ch * width_mult, 8)
self._is_res_connect = stride == 1 and in_ch == out_ch
activation_layer = nn.Hardswish if hs_act else nn.ReLU
layers = []
if mid_ch != in_ch:
layers.append(ConvNormActivation(in_ch, mid_ch, kernel_size=1, norm_layer=norm_layer, activation_layer=activation_layer))
layers.append(ConvNormActivation(mid_ch, mid_ch, kernel_size=kernel, stride=stride, groups=mid_ch, norm_layer=norm_layer, activation_layer=activation_layer))
if use_se:
layers.append( SqueezeExcitation(mid_ch, _make_divisible(mid_ch // 4, 8), scale_activation=nn.Hardsigmoid) )
layers.append(ConvNormActivation(mid_ch, out_ch, kernel_size=1, norm_layer=norm_layer, activation_layer=None))
self.block = nn.Sequential(*layers)
self.out_ch = out_ch
def forward(self, input):
result = self.block(input)
if self._is_res_connect:
result = result + input
return result
class MobileNet(nn.Module):
def __init__(self, in_ch, out_ch, width_mult=1.0):
super().__init__()
norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
self.c0 = c0 = ConvNormActivation(in_ch, _make_divisible(16 * width_mult, 8), kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.Hardswish)
self.c1 = c1 = InvertedResidual ( c0.out_ch, 16, 16, 3, 1, use_se=False, hs_act=False, norm_layer=norm_layer, width_mult=width_mult)
self.c2 = c2 = InvertedResidual ( c1.out_ch, 64, 24, 3, 2, use_se=False, hs_act=False, norm_layer=norm_layer, width_mult=width_mult)
self.c3 = c3 = InvertedResidual ( c2.out_ch, 72, 24, 3, 1, use_se=False, hs_act=False, norm_layer=norm_layer, width_mult=width_mult)
self.c4 = c4 = InvertedResidual ( c3.out_ch, 72, 40, 5, 2, use_se=True, hs_act=False, norm_layer=norm_layer, width_mult=width_mult)
self.c5 = c5 = InvertedResidual ( c4.out_ch, 120, 40, 5, 1, use_se=True, hs_act=False, norm_layer=norm_layer, width_mult=width_mult)
self.c6 = c6 = InvertedResidual ( c5.out_ch, 120, 40, 5, 1, use_se=True, hs_act=False, norm_layer=norm_layer, width_mult=width_mult)
self.c7 = c7 = InvertedResidual ( c6.out_ch, 240, 80, 3, 2, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c8 = c8 = InvertedResidual ( c7.out_ch, 200, 80, 3, 1, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c9 = c9 = InvertedResidual ( c8.out_ch, 184, 80, 3, 1, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c10 = c10 = InvertedResidual ( c9.out_ch, 184, 80, 3, 1, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c11 = c11 = InvertedResidual ( c10.out_ch, 480, 112, 3, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c12 = c12 = InvertedResidual ( c11.out_ch, 672, 112, 3, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c13 = c13 = InvertedResidual ( c12.out_ch, 672, 160, 5, 2, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c14 = c14 = InvertedResidual ( c13.out_ch, 960, 160, 5, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c15 = c15 = InvertedResidual ( c14.out_ch, 960, 160, 5, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult)
self.c16 = c16 = ConvNormActivation(c15.out_ch, _make_divisible(6*160*width_mult, 8), kernel_size=1, norm_layer=norm_layer, activation_layer=nn.Hardswish)
self.fc1 = nn.Linear(c16.out_ch, _make_divisible(c16.out_ch*1.33, 8) )
self.fc1_act = nn.Hardswish()
self.fc2 = nn.Linear(self.fc1.out_features, out_ch)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, inp):
x = inp
x = self.c0(x)
x = self.c1(x)
x = self.c2(x)
x = self.c3(x)
x = self.c4(x)
x = self.c5(x)
x = self.c6(x)
x = self.c7(x)
x = self.c8(x)
x = self.c9(x)
x = self.c10(x)
x = self.c11(x)
x = self.c12(x)
x = self.c13(x)
x = self.c14(x)
x = self.c15(x)
x = self.c16(x)
x = self.fc1(x.mean((-2,-1)))
x = self.fc1_act(x)
x = self.fc2(x)
return x

225
xlib/torch/model/XsegNet.py Normal file
View file

@ -0,0 +1,225 @@
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class FRNorm2D(nn.Module):
def __init__(self, in_ch):
super().__init__()
self.in_ch = in_ch
self.weight = nn.parameter.Parameter( torch.Tensor(1, in_ch, 1, 1), requires_grad=True)
self.bias = nn.parameter.Parameter( torch.Tensor(1, in_ch, 1, 1), requires_grad=True)
self.eps = nn.parameter.Parameter(torch.Tensor(1), requires_grad=True)
nn.init.ones_(self.weight)
nn.init.zeros_(self.bias)
nn.init.constant_(self.eps, 1e-6)
def forward(self, x):
nu2 = x.pow(2).mean(dim=[2, 3], keepdim=True)
x = x * torch.rsqrt(nu2 + self.eps.abs())
return self.weight * x + self.bias
class TLU(nn.Module):
def __init__(self, in_ch):
super(TLU, self).__init__()
self.in_ch = in_ch
self.tau = nn.parameter.Parameter(torch.Tensor(1, in_ch, 1, 1), requires_grad=True)
nn.init.zeros_(self.tau)
def forward(self, x):
return torch.max(x, self.tau)
class BlurPool(nn.Module):
def __init__(self, filt_size=3, stride=2, pad_off=0):
super().__init__()
self.filt_size = filt_size
self.pad_off = pad_off
self.pad_sizes = [int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)), int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2))]
self.pad_sizes = [pad_size+pad_off for pad_size in self.pad_sizes]
self.stride = stride
self.off = int((self.stride-1)/2.)
if(self.filt_size==2):
a = np.array([1., 1.])
elif(self.filt_size==3):
a = np.array([1., 2., 1.])
elif(self.filt_size==4):
a = np.array([1., 3., 3., 1.])
elif(self.filt_size==5):
a = np.array([1., 4., 6., 4., 1.])
elif(self.filt_size==6):
a = np.array([1., 5., 10., 10., 5., 1.])
elif(self.filt_size==7):
a = np.array([1., 6., 15., 20., 15., 6., 1.])
filt = torch.Tensor(a[:,None]*a[None,:])
filt = filt/torch.sum(filt)
self.register_buffer('filt', filt[None,None,:,:])
self.pad = nn.ZeroPad2d(self.pad_sizes)
def forward(self, inp):
filt = self.filt.repeat((inp.shape[1],1,1,1))
return F.conv2d(self.pad(inp), filt, stride=self.stride, groups=inp.shape[1])
class ConvBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.Conv2d (in_ch, out_ch, kernel_size=3, padding=1)
self.frn = FRNorm2D(out_ch)
self.tlu = TLU(out_ch)
def forward(self, x):
x = self.conv(x)
x = self.frn(x)
x = self.tlu(x)
return x
class UpConvBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.ConvTranspose2d (in_ch, out_ch, kernel_size=3, stride=2, padding=1,output_padding=1)
self.frn = FRNorm2D(out_ch)
self.tlu = TLU(out_ch)
def forward(self, x):
x = self.conv(x)
x = self.frn(x)
x = self.tlu(x)
return x
class XSegNet(nn.Module):
def __init__(self, in_ch, out_ch, base_ch=32):
"""
"""
super().__init__()
self.base_ch = base_ch
self.conv01 = ConvBlock(in_ch, base_ch)
self.conv02 = ConvBlock(base_ch, base_ch)
self.bp0 = BlurPool (filt_size=4)
self.conv11 = ConvBlock(base_ch, base_ch*2)
self.conv12 = ConvBlock(base_ch*2, base_ch*2)
self.bp1 = BlurPool (filt_size=3)
self.conv21 = ConvBlock(base_ch*2, base_ch*4)
self.conv22 = ConvBlock(base_ch*4, base_ch*4)
self.bp2 = BlurPool (filt_size=2)
self.conv31 = ConvBlock(base_ch*4, base_ch*8)
self.conv32 = ConvBlock(base_ch*8, base_ch*8)
self.conv33 = ConvBlock(base_ch*8, base_ch*8)
self.bp3 = BlurPool (filt_size=2)
self.conv41 = ConvBlock(base_ch*8, base_ch*8)
self.conv42 = ConvBlock(base_ch*8, base_ch*8)
self.conv43 = ConvBlock(base_ch*8, base_ch*8)
self.bp4 = BlurPool (filt_size=2)
self.conv51 = ConvBlock(base_ch*8, base_ch*8)
self.conv52 = ConvBlock(base_ch*8, base_ch*8)
self.conv53 = ConvBlock(base_ch*8, base_ch*8)
self.bp5 = BlurPool (filt_size=2)
self.dense1 = nn.Linear ( 4*4* base_ch*8, 512)
self.dense2 = nn.Linear ( 512, 4*4* base_ch*8)
self.up5 = UpConvBlock (base_ch*8, base_ch*4)
self.uconv53 = ConvBlock(base_ch*12, base_ch*8)
self.uconv52 = ConvBlock(base_ch*8, base_ch*8)
self.uconv51 = ConvBlock(base_ch*8, base_ch*8)
self.up4 = UpConvBlock (base_ch*8, base_ch*4)
self.uconv43 = ConvBlock(base_ch*12, base_ch*8)
self.uconv42 = ConvBlock(base_ch*8, base_ch*8)
self.uconv41 = ConvBlock(base_ch*8, base_ch*8)
self.up3 = UpConvBlock (base_ch*8, base_ch*4)
self.uconv33 = ConvBlock(base_ch*12, base_ch*8)
self.uconv32 = ConvBlock(base_ch*8, base_ch*8)
self.uconv31 = ConvBlock(base_ch*8, base_ch*8)
self.up2 = UpConvBlock (base_ch*8, base_ch*4)
self.uconv22 = ConvBlock(base_ch*8, base_ch*4)
self.uconv21 = ConvBlock(base_ch*4, base_ch*4)
self.up1 = UpConvBlock (base_ch*4, base_ch*2)
self.uconv12 = ConvBlock(base_ch*4, base_ch*2)
self.uconv11 = ConvBlock(base_ch*2, base_ch*2)
self.up0 = UpConvBlock (base_ch*2, base_ch)
self.uconv02 = ConvBlock(base_ch*2, base_ch)
self.uconv01 = ConvBlock(base_ch, base_ch)
self.out_conv = nn.Conv2d (base_ch, out_ch, kernel_size=7, padding=3)
def forward(self, inp):
x = inp
x = self.conv01(x)
x = x0 = self.conv02(x)
x = self.bp0(x)
x = self.conv11(x)
x = x1 = self.conv12(x)
x = self.bp1(x)
x = self.conv21(x)
x = x2 = self.conv22(x)
x = self.bp2(x)
x = self.conv31(x)
x = self.conv32(x)
x = x3 = self.conv33(x)
x = self.bp3(x)
x = self.conv41(x)
x = self.conv42(x)
x = x4 = self.conv43(x)
x = self.bp4(x)
x = self.conv51(x)
x = self.conv52(x)
x = x5 = self.conv53(x)
x = self.bp5(x)
x = x.view(x.shape[0], -1)
x = self.dense1(x)
x = self.dense2(x)
x = x.view (-1, self.base_ch*8, 4, 4)
x = self.up5(x)
x = self.uconv53(torch.cat([x,x5],axis=1))
x = self.uconv52(x)
x = self.uconv51(x)
x = self.up4(x)
x = self.uconv43(torch.cat([x,x4],axis=1))
x = self.uconv42(x)
x = self.uconv41(x)
x = self.up3(x)
x = self.uconv33(torch.cat([x,x3],axis=1))
x = self.uconv32(x)
x = self.uconv31(x)
x = self.up2(x)
x = self.uconv22(torch.cat([x,x2],axis=1))
x = self.uconv21(x)
x = self.up1(x)
x = self.uconv12(torch.cat([x,x1],axis=1))
x = self.uconv11(x)
x = self.up0(x)
x = self.uconv02(torch.cat([x,x0],axis=1))
x = self.uconv01(x)
x = self.out_conv(x)
return x

View file

@ -0,0 +1,2 @@
from .XsegNet import XSegNet
from .MobileNet import MobileNet