upd xlib.torch

This commit is contained in:
iperov 2021-11-11 23:09:26 +04:00
parent fd0ca499bf
commit 6e84cbe8b6
3 changed files with 74 additions and 4 deletions

View file

@ -25,9 +25,13 @@ class TorchDeviceInfo:
return self._index
def get_name(self) -> str:
if self.is_cpu():
return 'CPU'
return self._name
def get_total_memory(self) -> int:
if self.is_cpu():
return 0
return self._total_memory
def __eq__(self, other):
@ -49,17 +53,23 @@ class TorchDeviceInfo:
_torch_devices = None
def get_cpu_device_info() -> TorchDeviceInfo:
return TorchDeviceInfo(index=-1, name='CPU', total_memory=0)
def get_cpu_device_info() -> TorchDeviceInfo: return TorchDeviceInfo(index=-1)
def get_device_info_by_index(index) -> Union[TorchDeviceInfo, None]:
def get_device_info_by_index( index : int ) -> Union[TorchDeviceInfo, None]:
"""
index if -1, returns CPU Device info
"""
if index == -1:
return get_cpu_device_info()
for device in get_available_devices_info(include_cpu=False):
if device.get_index() == index:
return device
return None
def get_device(device_info : TorchDeviceInfo) -> torch.device:
"""
get physical torch.device from TorchDeviceInfo
"""
if device_info.is_cpu():
return torch.device('cpu')
return torch.device(f'cuda:{device_info.get_index()}')

View file

@ -0,0 +1,59 @@
import torch
import numpy as np
class AdaBelief(torch.optim.Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay=0, lr_dropout = 1.0):
defaults = dict(lr=lr, lr_dropout=lr_dropout, betas=betas, eps=eps, weight_decay=weight_decay)
super(AdaBelief, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdaBelief, self).__setstate__(state)
def reset(self):
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['step'] = 0
state['m_t'] = torch.zeros_like(p.data,memory_format=torch.preserve_format)
state['v_t'] = torch.zeros_like(p.data,memory_format=torch.preserve_format)
def step(self):
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
beta1, beta2 = group['betas']
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['m_t'] = torch.zeros_like(p.data,memory_format=torch.preserve_format)
state['v_t'] = torch.zeros_like(p.data,memory_format=torch.preserve_format)
if group['weight_decay'] != 0:
grad.add_(p.data, alpha=group['weight_decay'])
state['step'] += 1
m_t, v_t = state['m_t'], state['v_t']
m_t.mul_(beta1).add_( grad , alpha=1 - beta1)
v_t.mul_(beta2).add_( (grad - m_t)**2 , alpha=1 - beta2)
v_diff = (-group['lr'] * m_t).div_( v_t.sqrt().add_(group['eps']) )
if group['lr_dropout'] < 1.0:
lrd_rand = torch.ones_like(p.data)
v_diff *= torch.bernoulli(lrd_rand * group['lr_dropout'] )
# from xlib.console.diacon import Diacon
# Diacon.stop()
# import code
# code.interact(local=dict(globals(), **locals()))
p.data.add_(v_diff)

View file

@ -0,0 +1 @@
from .AdaBelief import AdaBelief