refactoring

This commit is contained in:
iperov 2021-11-11 23:15:51 +04:00
parent 6b6b6b2d16
commit 64116844f2
9 changed files with 360 additions and 74 deletions

Binary file not shown.

View file

@ -135,7 +135,7 @@ class FaceAlignerWorker(BackendWorker):
exclude_moving_parts=state.exclude_moving_parts,
head_yaw=head_yaw,
x_offset=state.x_offset,
y_offset=state.y_offset)
y_offset=state.y_offset-0.08)
fsi.face_align_image_name = f'{frame_image_name}_{face_id}_aligned'
fsi.image_to_align_uni_mat = uni_mat

View file

@ -233,7 +233,7 @@ class FaceMergerWorker(BackendWorker):
# Combine face mask
face_mask = ImageProcessor(face_mask).erode_blur(state.face_mask_erode, state.face_mask_blur, fade_to_border=True).get_image('HWC')
frame_face_mask = ImageProcessor(face_mask).warpAffine(aligned_to_source_uni_mat, frame_width, frame_height).clip2( (1.0/255.0), 0.0, 1.0, 1.0).get_image('HWC')
frame_face_mask = ImageProcessor(face_mask).warp_affine(aligned_to_source_uni_mat, frame_width, frame_height).clip2( (1.0/255.0), 0.0, 1.0, 1.0).get_image('HWC')
face_swap_img = ImageProcessor(face_swap_img).to_ufloat32().get_image('HWC')
@ -241,7 +241,7 @@ class FaceMergerWorker(BackendWorker):
face_align_img = ImageProcessor(face_align_img).to_ufloat32().get_image('HWC')
face_swap_img = lib_ct.rct(face_swap_img, face_align_img, target_mask=face_mask, source_mask=face_mask)
frame_face_swap_img = ImageProcessor(face_swap_img).warpAffine(aligned_to_source_uni_mat, frame_width, frame_height, interpolation=interpolation).get_image('HWC')
frame_face_swap_img = ImageProcessor(face_swap_img).warp_affine(aligned_to_source_uni_mat, frame_width, frame_height, interpolation=interpolation).get_image('HWC')
# Combine final frame
opacity = np.float32(state.face_opacity)

View file

@ -251,10 +251,10 @@ class FaceSwapperWorker(BackendWorker):
fai_ip = ImageProcessor(face_align_image)
if model_state.presharpen_amount != 0:
fai_ip.sharpen(factor=model_state.presharpen_amount)
fai_ip.gaussian_sharpen(sigma=1.0, power=model_state.presharpen_amount)
if pre_gamma_red != 1.0 or pre_gamma_green != 1.0 or pre_gamma_blue != 1.0:
fai_ip.adjust_gamma(pre_gamma_red, pre_gamma_green, pre_gamma_blue)
fai_ip.gamma(pre_gamma_red, pre_gamma_green, pre_gamma_blue)
face_align_image = fai_ip.get_image('HWC')
celeb_face, celeb_face_mask_img, face_align_mask_img = dfm_model.convert(face_align_image, morph_factor=model_state.morph_factor)

View file

@ -77,8 +77,8 @@ class FrameAdjusterWorker(BackendWorker):
if frame_image is not None:
frame_image_ip = ImageProcessor(frame_image)
frame_image_ip.median_blur(5, state.median_blur_per / 100.0 )
frame_image_ip.degrade_resize( state.degrade_bicubic_per / 100.0, interpolation=ImageProcessor.Interpolation.CUBIC)
frame_image_ip.median_blur(5, opacity=state.median_blur_per / 100.0 )
frame_image_ip.reresize( state.degrade_bicubic_per / 100.0, interpolation=ImageProcessor.Interpolation.CUBIC)
frame_image = frame_image_ip.get_image('HWC')
bcd.set_image(frame_image_name, frame_image)

18
main.py
View file

@ -4,6 +4,7 @@ import platform
from pathlib import Path
from xlib import appargs as lib_appargs
from xlib import os as lib_os
# onnxruntime==1.8.0 requires CUDA_PATH_V11_2, but 1.8.1 don't
# keep the code if they return that behaviour
@ -69,24 +70,15 @@ def main():
train_parsers = train_parser.add_subparsers()
def train_FaceAligner(args):
faceset_path = Path(args.faceset_path)
from apps.trainers.FaceAligner.FaceAlignerTrainer import FaceAlignerTrainer
FaceAlignerTrainer(faceset_path=faceset_path).run()
lib_os.set_process_priority(lib_os.ProcessPriority.IDLE)
from apps.trainers.FaceAligner.FaceAlignerTrainerApp import FaceAlignerTrainerApp
FaceAlignerTrainerApp(workspace_path=Path(args.workspace_dir), faceset_path=Path(args.faceset_path))
p = train_parsers.add_parser('FaceAligner')
p.add_argument('--workspace-dir', default=None, action=fixPathAction, help="Workspace directory.")
p.add_argument('--faceset-path', default=None, action=fixPathAction, help=".dfs path")
p.set_defaults(func=train_FaceAligner)
def train_CTSOT(args):
from apps.trainers.CTSOT.CTSOTTrainerApp import CTSOTTrainerApp
CTSOTTrainerApp(workspace_path=Path(args.workspace_dir), faceset_path=Path(args.faceset_path))
p = train_parsers.add_parser('CTSOT')
p.add_argument('--workspace-dir', default=None, action=fixPathAction, help="Workspace directory.")
p.add_argument('--faceset-path', default=None, action=fixPathAction, help=".dfs faceset path")
p.set_defaults(func=train_CTSOT)
def bad_args(arguments):
parser.print_help()
exit(0)

View file

@ -103,6 +103,8 @@ class FLandmarks2D(IState):
b = max(xlb[1], xrb[1])
return FRect.from_ltrb( (l,t,r,b) )
def calc_cut(self, h_w, coverage : float, output_size : int,
exclude_moving_parts : bool = False,
head_yaw : float = None,
@ -143,19 +145,18 @@ class FLandmarks2D(IState):
bt_diag_vec = (g_p[1]-g_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
# calc modifier of diagonal vectors for scale and coverage value
scale = 1.0
mod = (1.0 / scale)* ( npla.norm(g_p[0]-g_p[2])*( coverage * 0.5) )
# adjust vertical offset to cover more forehead
h_vec = (g_p[1]-g_p[0]).astype(np.float32)
v_vec = (g_p[3]-g_p[0]).astype(np.float32)
# calc modifier of diagonal vectors for coverage value
mod = npla.norm(g_p[0]-g_p[2])*(coverage*0.5)
if head_yaw is not None:
# Damp near zero
x_offset += -(head_yaw * np.abs(np.tanh(head_yaw*2)) ) * 0.5
g_c += h_vec*x_offset + v_vec*(y_offset-0.08)
# adjust vertical offset to cover more forehead
h_vec = (g_p[1]-g_p[0]).astype(np.float32)
v_vec = (g_p[3]-g_p[0]).astype(np.float32)
g_c += h_vec*x_offset + v_vec*y_offset
l_t = np.array( [ g_c - tb_diag_vec*mod,
g_c + bt_diag_vec*mod,
@ -174,7 +175,7 @@ class FLandmarks2D(IState):
exclude_moving_parts : bool = False,
head_yaw : float = None,
x_offset : float = 0,
y_offset : float = 0) -> Tuple[Affine2DMat, Affine2DUniMat]:
y_offset : float = 0) -> Tuple[np.ndarray, Affine2DUniMat]:
"""
Cut the face to square of output_size from img using landmarks with given parameters

View file

@ -39,7 +39,7 @@ class ImageProcessor:
"""
"""
ip = ImageProcessor.__new__(ImageProcessor)
ip._img = self._img
ip._img = self._img.copy()
return ip
def get_dims(self) -> Tuple[int,int,int,int]:
@ -53,18 +53,24 @@ class ImageProcessor:
def get_dtype(self):
return self._img.dtype
def adjust_gamma(self, red : float, green : float, blue : float) -> 'ImageProcessor':
def gamma(self, red : float, green : float, blue : float, mask=None) -> 'ImageProcessor':
dtype = self.get_dtype()
self.to_ufloat32()
img = self._img
np.power(img, np.array([1.0 / blue, 1.0 / green, 1.0 / red], np.float32), out=img)
img = orig_img = self._img
img = np.power(img, np.array([1.0 / blue, 1.0 / green, 1.0 / red], np.float32) )
np.clip(img, 0, 1.0, out=img)
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def apply(self, func) -> 'ImageProcessor':
def apply(self, func, mask=None) -> 'ImageProcessor':
"""
apply your own function on internal image
@ -76,12 +82,16 @@ class ImageProcessor:
.apply( lambda img: img-[102,127,63] )
"""
img = self._img
dtype = img.dtype
new_img = func(self._img).astype(dtype)
if new_img.ndim != 4:
img = orig_img = self._img
img = func(img).astype(orig_img.dtype)
if img.ndim != 4:
raise Exception('func used in ImageProcessor.apply changed format of image')
self._img = new_img
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(orig_img.dtype)
self._img = img
return self
def fit_in (self, TW = None, TH = None, pad_to_target : bool = False, allow_upscale : bool = False, interpolation : 'ImageProcessor.Interpolation' = None) -> float:
@ -147,7 +157,7 @@ class ImageProcessor:
img[h] = high_val
return self
def degrade_resize(self, power : float, interpolation : 'ImageProcessor.Interpolation' = None) -> 'ImageProcessor':
def reresize(self, power : float, interpolation : 'ImageProcessor.Interpolation' = None, mask = None) -> 'ImageProcessor':
"""
power float 0 .. 1.0
@ -159,7 +169,7 @@ class ImageProcessor:
if interpolation is None:
interpolation = ImageProcessor.Interpolation.LINEAR
img = self._img
img = orig_img = self._img
N,H,W,C = img.shape
W_lr = max(4, int(W*(1.0-power)))
@ -169,40 +179,195 @@ class ImageProcessor:
img = cv2.resize (img, (W,H) , interpolation=_cv_inter[interpolation])
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(orig_img.dtype)
self._img = img
return self
def median_blur(self, size : int, power : float) -> 'ImageProcessor':
def box_sharpen(self, size : int, power : float, mask = None) -> 'ImageProcessor':
"""
size int median kernel size
size int kernel size
power float 0 .. 1.0
power float 0 .. 1.0 (or higher)
"""
power = min(1, max(0, power))
power = max(0, power)
if power == 0:
return self
if size % 2 == 0:
size += 1
dtype = self.get_dtype()
self.to_ufloat32()
img = orig_img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
kernel = np.zeros( (size, size), dtype=np.float32)
kernel[ size//2, size//2] = 1.0
box_filter = np.ones( (size, size), dtype=np.float32) / (size**2)
kernel = kernel + (kernel - box_filter) * (power)
img = cv2.filter2D(img, -1, kernel)
img = np.clip(img, 0, 1, out=img)
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def gaussian_sharpen(self, sigma : float, power : float, mask = None) -> 'ImageProcessor':
"""
sigma float
power float 0 .. 1.0 and higher
"""
sigma = max(0, sigma)
if sigma == 0:
return self
dtype = self.get_dtype()
self.to_ufloat32()
img = self._img
img = orig_img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
img_blur = cv2.medianBlur(img, size)
img = ne.evaluate('img*(1.0-power) + img_blur*power')
img = cv2.addWeighted(img, 1.0 + power,
cv2.GaussianBlur(img, (0, 0), sigma), -power, 0)
img = np.clip(img, 0, 1, out=img)
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def gaussian_blur(self, sigma : float, opacity : float = 1.0, mask = None) -> 'ImageProcessor':
"""
sigma float
opacity float 0 .. 1.0
"""
sigma = max(0, sigma)
if sigma == 0:
return self
opacity = np.float32( min(1, max(0, opacity)) )
if opacity == 0:
return self
dtype = self.get_dtype()
self.to_ufloat32()
img = orig_img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
img_blur = cv2.GaussianBlur(img, (0,0), sigma)
f32_1 = np.float32(1.0)
img = ne.evaluate('img*(f32_1-opacity) + img_blur*opacity')
img = np.clip(img, 0, 1, out=img)
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def median_blur(self, size : int, opacity : float, mask = None) -> 'ImageProcessor':
"""
size int median kernel size
opacity float 0 .. 1.0
"""
opacity = min(1, max(0, opacity))
if opacity == 0:
return self
dtype = self.get_dtype()
self.to_ufloat32()
img = orig_img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
img_blur = cv2.medianBlur(img, size)
f32_1 = np.float32(1.0)
img = ne.evaluate('img*(f32_1-opacity) + img_blur*opacity')
img = np.clip(img, 0, 1, out=img)
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def motion_blur( self, size, angle, mask=None ):
"""
size [1..]
angle degrees
mask H,W
H,W,C
N,H,W,C int/float 0-1 will be applied
"""
if size % 2 == 0:
size += 1
dtype = self.get_dtype()
self.to_ufloat32()
img = orig_img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
k = np.zeros((size, size), dtype=np.float32)
k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32)
k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) )
k = k * ( 1.0 / np.sum(k) )
img = cv2.filter2D(img, -1, k)
img = np.clip(img, 0, 1, out=img)
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def erode_blur(self, erode : int, blur : int, fade_to_border : bool = False) -> 'ImageProcessor':
"""
apply erode and blur to the image
apply erode and blur to the mask image
erode int != 0
blur int > 0
@ -245,6 +410,125 @@ class ImageProcessor:
self._img = img
return self
def levels(self, in_bwg_out_bw, mask = None) -> 'ImageProcessor':
"""
in_bwg_out_bw ( [N],[C], 5)
optional per channel/batch input black,white,gamma and out black,white floats
in black = [0.0 .. 1.0] default:0.0
in white = [0.0 .. 1.0] default:1.0
in gamma = [0.0 .. 2.0++] default:1.0
out black = [0.0 .. 1.0] default:0.0
out white = [0.0 .. 1.0] default:1.0
"""
dtype = self.get_dtype()
self.to_ufloat32()
img = orig_img = self._img
N,H,W,C = img.shape
v = np.array(in_bwg_out_bw, np.float32)
if v.ndim == 1:
v = v[None,None,...]
v = np.tile(v, (N,C,1))
elif v.ndim == 2:
v = v[None,...]
v = np.tile(v, (N,1,1))
elif v.ndim > 3:
raise ValueError('in_bwg_out_bw.ndim > 3')
VN, VC, VD = v.shape
if N != VN or C != VC or VD != 5:
raise ValueError('wrong in_bwg_out_bw size. Must have 5 floats at last dim.')
v = v[:,None,None,:,:]
img = np.clip( (img - v[...,0]) / (v[...,1] - v[...,0]), 0, 1 )
img = ( img ** (1/v[...,2]) ) * (v[...,4] - v[...,3]) + v[...,3]
img = np.clip(img, 0, 1, out=img)
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def hsv(self, h_diff : float, s_diff : float, v_diff : float, mask = None) -> 'ImageProcessor':
"""
apply HSV modification for BGR image
h_diff = [-360.0 .. 360.0]
s_diff = [-1.0 .. 1.0]
s_diff = [-1.0 .. 1.0]
"""
dtype = self.get_dtype()
self.to_ufloat32()
img = orig_img = self._img
N,H,W,C = img.shape
if C != 3:
raise Exception('Image channels must be == 3')
img = img.reshape( (N*H,W,C) )
h, s, v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
h = ( h + h_diff ) % 360
s += s_diff
np.clip (s, 0, 1, out=s )
v += v_diff
np.clip (v, 0, 1, out=v )
img = np.clip( cv2.cvtColor(cv2.merge([h, s, v]), cv2.COLOR_HSV2BGR) , 0, 1 )
img = img.reshape( (N,H,W,C) )
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask')
self._img = img
self.to_dtype(dtype)
return self
def jpeg_recompress(self, quality : int, mask = None ) -> 'ImageProcessor':
"""
quality 0-100
"""
dtype = self.get_dtype()
self.to_uint8()
img = orig_img = self._img
_,_,_,C = img.shape
if C != 3:
raise Exception('Image channels must be == 3')
new_imgs = []
for x in img:
ret, result = cv2.imencode('.jpg', x, [int(cv2.IMWRITE_JPEG_QUALITY), quality] )
if not ret:
raise Exception('unable to compress jpeg')
x = cv2.imdecode(result, flags=cv2.IMREAD_UNCHANGED)
new_imgs.append(x)
img = np.array(new_imgs)
if mask is not None:
mask = self._check_normalize_mask(mask)
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(np.uint8)
self._img = img
self.to_dtype(dtype)
return self
def rotate90(self) -> 'ImageProcessor':
self._img = np.rot90(self._img, k=1, axes=(1,2) )
return self
@ -305,18 +589,6 @@ class ImageProcessor:
self._img = img
return self
def sharpen(self, factor : float, kernel_size=3) -> 'ImageProcessor':
img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
img = cv2.addWeighted(img, 1.0 + (0.5 * factor), blur, -(0.5 * factor), 0)
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
self._img = img
return self
def get_image(self, format) -> np.ndarray:
"""
returns image with desired format
@ -395,7 +667,7 @@ class ImageProcessor:
return self
def resize(self, size : Tuple, interpolation : 'ImageProcessor.Interpolation' = None, new_ip=False ) -> 'ImageProcessor':
def resize(self, size : Tuple, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
"""
resize to (W,H)
"""
@ -411,14 +683,11 @@ class ImageProcessor:
img = cv2.resize (img, (TW, TH), interpolation=_cv_inter[interpolation])
img = img.reshape( (TH,TW,N,C) ).transpose( (2,0,1,3) )
if new_ip:
return ImageProcessor(img)
self._img = img
return self
def warpAffine(self, mat, out_width, out_height, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
def warp_affine(self, mat, out_width, out_height, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
"""
img HWC
"""
@ -489,12 +758,36 @@ class ImageProcessor:
self._img = img.astype(np.uint8, copy=False)
return self
def _check_normalize_mask(self, mask : np.ndarray):
N,H,W,C = self._img.shape
if mask.ndim == 2:
mask = mask[None,...,None]
elif mask.ndim == 3:
mask = mask[None,...]
if mask.ndim != 4:
raise ValueError('mask must have ndim == 4')
MN, MH, MW, MC = mask.shape
if H != MH or W != MW:
raise ValueError('mask H,W, mismatch')
if MN != 1 and N != MN:
raise ValueError(f'mask N dim must be 1 or == {N}')
if MC != 1 and C != MC:
raise ValueError(f'mask C dim must be 1 or == {C}')
return mask
class Interpolation(IntEnum):
LINEAR = 0
CUBIC = 1
NEAREST = 0,
LINEAR = 1
CUBIC = 2,
LANCZOS4 = 4
_cv_inter = { ImageProcessor.Interpolation.LINEAR : cv2.INTER_LINEAR,
_cv_inter = { ImageProcessor.Interpolation.NEAREST : cv2.INTER_NEAREST,
ImageProcessor.Interpolation.LINEAR : cv2.INTER_LINEAR,
ImageProcessor.Interpolation.CUBIC : cv2.INTER_CUBIC,
ImageProcessor.Interpolation.LANCZOS4 : cv2.INTER_LANCZOS4,
}