mirror of
https://github.com/iperov/DeepFaceLive
synced 2025-07-16 10:03:42 -07:00
refactoring
This commit is contained in:
parent
6b6b6b2d16
commit
64116844f2
9 changed files with 360 additions and 74 deletions
|
@ -39,7 +39,7 @@ class ImageProcessor:
|
|||
"""
|
||||
"""
|
||||
ip = ImageProcessor.__new__(ImageProcessor)
|
||||
ip._img = self._img
|
||||
ip._img = self._img.copy()
|
||||
return ip
|
||||
|
||||
def get_dims(self) -> Tuple[int,int,int,int]:
|
||||
|
@ -53,18 +53,24 @@ class ImageProcessor:
|
|||
def get_dtype(self):
|
||||
return self._img.dtype
|
||||
|
||||
def adjust_gamma(self, red : float, green : float, blue : float) -> 'ImageProcessor':
|
||||
def gamma(self, red : float, green : float, blue : float, mask=None) -> 'ImageProcessor':
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
img = self._img
|
||||
np.power(img, np.array([1.0 / blue, 1.0 / green, 1.0 / red], np.float32), out=img)
|
||||
img = orig_img = self._img
|
||||
|
||||
img = np.power(img, np.array([1.0 / blue, 1.0 / green, 1.0 / red], np.float32) )
|
||||
np.clip(img, 0, 1.0, out=img)
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
|
||||
def apply(self, func) -> 'ImageProcessor':
|
||||
def apply(self, func, mask=None) -> 'ImageProcessor':
|
||||
"""
|
||||
apply your own function on internal image
|
||||
|
||||
|
@ -76,12 +82,16 @@ class ImageProcessor:
|
|||
|
||||
.apply( lambda img: img-[102,127,63] )
|
||||
"""
|
||||
img = self._img
|
||||
dtype = img.dtype
|
||||
new_img = func(self._img).astype(dtype)
|
||||
if new_img.ndim != 4:
|
||||
img = orig_img = self._img
|
||||
img = func(img).astype(orig_img.dtype)
|
||||
if img.ndim != 4:
|
||||
raise Exception('func used in ImageProcessor.apply changed format of image')
|
||||
self._img = new_img
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(orig_img.dtype)
|
||||
|
||||
self._img = img
|
||||
return self
|
||||
|
||||
def fit_in (self, TW = None, TH = None, pad_to_target : bool = False, allow_upscale : bool = False, interpolation : 'ImageProcessor.Interpolation' = None) -> float:
|
||||
|
@ -147,7 +157,7 @@ class ImageProcessor:
|
|||
img[h] = high_val
|
||||
return self
|
||||
|
||||
def degrade_resize(self, power : float, interpolation : 'ImageProcessor.Interpolation' = None) -> 'ImageProcessor':
|
||||
def reresize(self, power : float, interpolation : 'ImageProcessor.Interpolation' = None, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
|
||||
power float 0 .. 1.0
|
||||
|
@ -159,7 +169,7 @@ class ImageProcessor:
|
|||
if interpolation is None:
|
||||
interpolation = ImageProcessor.Interpolation.LINEAR
|
||||
|
||||
img = self._img
|
||||
img = orig_img = self._img
|
||||
|
||||
N,H,W,C = img.shape
|
||||
W_lr = max(4, int(W*(1.0-power)))
|
||||
|
@ -168,41 +178,196 @@ class ImageProcessor:
|
|||
img = cv2.resize (img, (W_lr,H_lr), interpolation=_cv_inter[interpolation])
|
||||
img = cv2.resize (img, (W,H) , interpolation=_cv_inter[interpolation])
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(orig_img.dtype)
|
||||
|
||||
self._img = img
|
||||
return self
|
||||
|
||||
|
||||
def median_blur(self, size : int, power : float) -> 'ImageProcessor':
|
||||
def box_sharpen(self, size : int, power : float, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
size int median kernel size
|
||||
size int kernel size
|
||||
|
||||
power float 0 .. 1.0
|
||||
power float 0 .. 1.0 (or higher)
|
||||
"""
|
||||
power = min(1, max(0, power))
|
||||
power = max(0, power)
|
||||
if power == 0:
|
||||
return self
|
||||
|
||||
if size % 2 == 0:
|
||||
size += 1
|
||||
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
|
||||
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
||||
|
||||
kernel = np.zeros( (size, size), dtype=np.float32)
|
||||
kernel[ size//2, size//2] = 1.0
|
||||
box_filter = np.ones( (size, size), dtype=np.float32) / (size**2)
|
||||
kernel = kernel + (kernel - box_filter) * (power)
|
||||
img = cv2.filter2D(img, -1, kernel)
|
||||
img = np.clip(img, 0, 1, out=img)
|
||||
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
def gaussian_sharpen(self, sigma : float, power : float, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
sigma float
|
||||
|
||||
power float 0 .. 1.0 and higher
|
||||
"""
|
||||
sigma = max(0, sigma)
|
||||
if sigma == 0:
|
||||
return self
|
||||
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = self._img
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
|
||||
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
||||
|
||||
img_blur = cv2.medianBlur(img, size)
|
||||
img = ne.evaluate('img*(1.0-power) + img_blur*power')
|
||||
|
||||
|
||||
img = cv2.addWeighted(img, 1.0 + power,
|
||||
cv2.GaussianBlur(img, (0, 0), sigma), -power, 0)
|
||||
img = np.clip(img, 0, 1, out=img)
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
def gaussian_blur(self, sigma : float, opacity : float = 1.0, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
sigma float
|
||||
|
||||
opacity float 0 .. 1.0
|
||||
"""
|
||||
sigma = max(0, sigma)
|
||||
if sigma == 0:
|
||||
return self
|
||||
opacity = np.float32( min(1, max(0, opacity)) )
|
||||
if opacity == 0:
|
||||
return self
|
||||
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
|
||||
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
||||
|
||||
img_blur = cv2.GaussianBlur(img, (0,0), sigma)
|
||||
f32_1 = np.float32(1.0)
|
||||
img = ne.evaluate('img*(f32_1-opacity) + img_blur*opacity')
|
||||
|
||||
img = np.clip(img, 0, 1, out=img)
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
def median_blur(self, size : int, opacity : float, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
size int median kernel size
|
||||
|
||||
opacity float 0 .. 1.0
|
||||
"""
|
||||
opacity = min(1, max(0, opacity))
|
||||
if opacity == 0:
|
||||
return self
|
||||
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
|
||||
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
||||
|
||||
img_blur = cv2.medianBlur(img, size)
|
||||
f32_1 = np.float32(1.0)
|
||||
img = ne.evaluate('img*(f32_1-opacity) + img_blur*opacity')
|
||||
img = np.clip(img, 0, 1, out=img)
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
def motion_blur( self, size, angle, mask=None ):
|
||||
"""
|
||||
size [1..]
|
||||
|
||||
angle degrees
|
||||
|
||||
mask H,W
|
||||
H,W,C
|
||||
N,H,W,C int/float 0-1 will be applied
|
||||
"""
|
||||
if size % 2 == 0:
|
||||
size += 1
|
||||
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
|
||||
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
||||
|
||||
k = np.zeros((size, size), dtype=np.float32)
|
||||
k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32)
|
||||
k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) )
|
||||
k = k * ( 1.0 / np.sum(k) )
|
||||
|
||||
img = cv2.filter2D(img, -1, k)
|
||||
img = np.clip(img, 0, 1, out=img)
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
|
||||
def erode_blur(self, erode : int, blur : int, fade_to_border : bool = False) -> 'ImageProcessor':
|
||||
"""
|
||||
apply erode and blur to the image
|
||||
apply erode and blur to the mask image
|
||||
|
||||
erode int != 0
|
||||
blur int > 0
|
||||
|
@ -244,7 +409,126 @@ class ImageProcessor:
|
|||
|
||||
self._img = img
|
||||
return self
|
||||
|
||||
def levels(self, in_bwg_out_bw, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
in_bwg_out_bw ( [N],[C], 5)
|
||||
optional per channel/batch input black,white,gamma and out black,white floats
|
||||
|
||||
in black = [0.0 .. 1.0] default:0.0
|
||||
in white = [0.0 .. 1.0] default:1.0
|
||||
in gamma = [0.0 .. 2.0++] default:1.0
|
||||
|
||||
out black = [0.0 .. 1.0] default:0.0
|
||||
out white = [0.0 .. 1.0] default:1.0
|
||||
"""
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
|
||||
v = np.array(in_bwg_out_bw, np.float32)
|
||||
|
||||
if v.ndim == 1:
|
||||
v = v[None,None,...]
|
||||
v = np.tile(v, (N,C,1))
|
||||
elif v.ndim == 2:
|
||||
v = v[None,...]
|
||||
v = np.tile(v, (N,1,1))
|
||||
elif v.ndim > 3:
|
||||
raise ValueError('in_bwg_out_bw.ndim > 3')
|
||||
|
||||
VN, VC, VD = v.shape
|
||||
if N != VN or C != VC or VD != 5:
|
||||
raise ValueError('wrong in_bwg_out_bw size. Must have 5 floats at last dim.')
|
||||
|
||||
v = v[:,None,None,:,:]
|
||||
|
||||
img = np.clip( (img - v[...,0]) / (v[...,1] - v[...,0]), 0, 1 )
|
||||
|
||||
img = ( img ** (1/v[...,2]) ) * (v[...,4] - v[...,3]) + v[...,3]
|
||||
img = np.clip(img, 0, 1, out=img)
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
def hsv(self, h_diff : float, s_diff : float, v_diff : float, mask = None) -> 'ImageProcessor':
|
||||
"""
|
||||
apply HSV modification for BGR image
|
||||
|
||||
h_diff = [-360.0 .. 360.0]
|
||||
s_diff = [-1.0 .. 1.0]
|
||||
s_diff = [-1.0 .. 1.0]
|
||||
"""
|
||||
dtype = self.get_dtype()
|
||||
self.to_ufloat32()
|
||||
|
||||
img = orig_img = self._img
|
||||
N,H,W,C = img.shape
|
||||
if C != 3:
|
||||
raise Exception('Image channels must be == 3')
|
||||
|
||||
img = img.reshape( (N*H,W,C) )
|
||||
|
||||
h, s, v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
||||
h = ( h + h_diff ) % 360
|
||||
|
||||
s += s_diff
|
||||
np.clip (s, 0, 1, out=s )
|
||||
|
||||
v += v_diff
|
||||
np.clip (v, 0, 1, out=v )
|
||||
|
||||
img = np.clip( cv2.cvtColor(cv2.merge([h, s, v]), cv2.COLOR_HSV2BGR) , 0, 1 )
|
||||
img = img.reshape( (N,H,W,C) )
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
||||
|
||||
self._img = img
|
||||
self.to_dtype(dtype)
|
||||
return self
|
||||
|
||||
def jpeg_recompress(self, quality : int, mask = None ) -> 'ImageProcessor':
|
||||
"""
|
||||
quality 0-100
|
||||
"""
|
||||
dtype = self.get_dtype()
|
||||
self.to_uint8()
|
||||
|
||||
img = orig_img = self._img
|
||||
_,_,_,C = img.shape
|
||||
if C != 3:
|
||||
raise Exception('Image channels must be == 3')
|
||||
|
||||
new_imgs = []
|
||||
for x in img:
|
||||
ret, result = cv2.imencode('.jpg', x, [int(cv2.IMWRITE_JPEG_QUALITY), quality] )
|
||||
if not ret:
|
||||
raise Exception('unable to compress jpeg')
|
||||
x = cv2.imdecode(result, flags=cv2.IMREAD_UNCHANGED)
|
||||
|
||||
new_imgs.append(x)
|
||||
|
||||
img = np.array(new_imgs)
|
||||
|
||||
|
||||
if mask is not None:
|
||||
mask = self._check_normalize_mask(mask)
|
||||
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(np.uint8)
|
||||
|
||||
self._img = img
|
||||
self.to_dtype(dtype)
|
||||
|
||||
return self
|
||||
|
||||
def rotate90(self) -> 'ImageProcessor':
|
||||
self._img = np.rot90(self._img, k=1, axes=(1,2) )
|
||||
return self
|
||||
|
@ -305,18 +589,6 @@ class ImageProcessor:
|
|||
self._img = img
|
||||
return self
|
||||
|
||||
def sharpen(self, factor : float, kernel_size=3) -> 'ImageProcessor':
|
||||
img = self._img
|
||||
|
||||
N,H,W,C = img.shape
|
||||
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
||||
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
|
||||
img = cv2.addWeighted(img, 1.0 + (0.5 * factor), blur, -(0.5 * factor), 0)
|
||||
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
self._img = img
|
||||
return self
|
||||
|
||||
def get_image(self, format) -> np.ndarray:
|
||||
"""
|
||||
returns image with desired format
|
||||
|
@ -395,7 +667,7 @@ class ImageProcessor:
|
|||
|
||||
return self
|
||||
|
||||
def resize(self, size : Tuple, interpolation : 'ImageProcessor.Interpolation' = None, new_ip=False ) -> 'ImageProcessor':
|
||||
def resize(self, size : Tuple, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
|
||||
"""
|
||||
resize to (W,H)
|
||||
"""
|
||||
|
@ -411,14 +683,11 @@ class ImageProcessor:
|
|||
img = cv2.resize (img, (TW, TH), interpolation=_cv_inter[interpolation])
|
||||
img = img.reshape( (TH,TW,N,C) ).transpose( (2,0,1,3) )
|
||||
|
||||
if new_ip:
|
||||
return ImageProcessor(img)
|
||||
|
||||
self._img = img
|
||||
|
||||
return self
|
||||
|
||||
def warpAffine(self, mat, out_width, out_height, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
|
||||
def warp_affine(self, mat, out_width, out_height, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
|
||||
"""
|
||||
img HWC
|
||||
"""
|
||||
|
@ -489,12 +758,36 @@ class ImageProcessor:
|
|||
self._img = img.astype(np.uint8, copy=False)
|
||||
return self
|
||||
|
||||
def _check_normalize_mask(self, mask : np.ndarray):
|
||||
N,H,W,C = self._img.shape
|
||||
|
||||
if mask.ndim == 2:
|
||||
mask = mask[None,...,None]
|
||||
elif mask.ndim == 3:
|
||||
mask = mask[None,...]
|
||||
|
||||
if mask.ndim != 4:
|
||||
raise ValueError('mask must have ndim == 4')
|
||||
|
||||
MN, MH, MW, MC = mask.shape
|
||||
if H != MH or W != MW:
|
||||
raise ValueError('mask H,W, mismatch')
|
||||
|
||||
if MN != 1 and N != MN:
|
||||
raise ValueError(f'mask N dim must be 1 or == {N}')
|
||||
if MC != 1 and C != MC:
|
||||
raise ValueError(f'mask C dim must be 1 or == {C}')
|
||||
|
||||
return mask
|
||||
|
||||
class Interpolation(IntEnum):
|
||||
LINEAR = 0
|
||||
CUBIC = 1
|
||||
NEAREST = 0,
|
||||
LINEAR = 1
|
||||
CUBIC = 2,
|
||||
LANCZOS4 = 4
|
||||
|
||||
_cv_inter = { ImageProcessor.Interpolation.LINEAR : cv2.INTER_LINEAR,
|
||||
_cv_inter = { ImageProcessor.Interpolation.NEAREST : cv2.INTER_NEAREST,
|
||||
ImageProcessor.Interpolation.LINEAR : cv2.INTER_LINEAR,
|
||||
ImageProcessor.Interpolation.CUBIC : cv2.INTER_CUBIC,
|
||||
ImageProcessor.Interpolation.LANCZOS4 : cv2.INTER_LANCZOS4,
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue