This commit is contained in:
iperov 2021-11-21 13:33:04 +04:00
commit 2605930dfe
5 changed files with 220 additions and 8 deletions

View file

@ -53,6 +53,7 @@ class FaceAlignerTrainerApp:
self._device_info = None
self._batch_size = None
self._resolution = None
self._random_warp = None
self._iteration = None
self._autosave_period = None
self._is_training = False
@ -89,6 +90,11 @@ class FaceAlignerTrainerApp:
self._resolution = resolution
self._training_generator.set_resolution(resolution)
def get_random_warp(self) -> bool: return self._random_warp
def set_random_warp(self, random_warp : bool):
self._random_warp = random_warp
self._training_generator.set_random_warp(random_warp)
def get_iteration(self) -> int: return self._iteration
def set_iteration(self, iteration : int):
self._iteration = iteration
@ -112,6 +118,7 @@ class FaceAlignerTrainerApp:
self.set_device_info( lib_torch.get_device_info_by_index(model_data.get('device_index', -1)) )
self.set_batch_size( model_data.get('batch_size', 64) )
self.set_resolution( model_data.get('resolution', 224) )
self.set_random_warp( model_data.get('random_warp', True) )
self.set_iteration( model_data.get('iteration', 0) )
self.set_autosave_period( model_data.get('autosave_period', 25) )
self.set_is_training( model_data.get('training', False) )
@ -123,8 +130,8 @@ class FaceAlignerTrainerApp:
def reset_model(self, load : bool = True):
while True:
model = tv.mobilenet.mobilenet_v3_large(num_classes=6)
#model = tv.mobilenet.mobilenet_v3_large(num_classes=6)
model = torch_models.FaceAlignerNet()
model.train()
model.to(self._device)
@ -158,6 +165,7 @@ class FaceAlignerTrainerApp:
d = {'device_index' : self._device_info.get_index(),
'batch_size' : self.get_batch_size(),
'resolution' : self.get_resolution(),
'random_warp' : self.get_random_warp(),
'iteration' : self.get_iteration(),
'autosave_period' : self.get_autosave_period(),
'training' : self.get_is_training(),
@ -291,7 +299,7 @@ class FaceAlignerTrainerApp:
self._is_training:
# Inference for both preview and training
img_aligned_shifted_t = torch.tensor(training_data.img_aligned_shifted).to(self._device)
shift_uni_mats_pred_t = self._model(img_aligned_shifted_t).view( (-1,2,3) )
shift_uni_mats_pred_t = self._model(img_aligned_shifted_t)#.view( (-1,2,3) )
if self._is_training:
# Training optimization step
@ -340,7 +348,7 @@ class FaceAlignerTrainerApp:
dc.DlgChoice(short_name='l', row_def=f'| Print loss history | Last loss = {last_loss:.5f} ',
on_choose=self.on_main_dlg_print_loss_history ),
dc.DlgChoice(short_name='p', row_def='| Show current preview.',
on_choose=lambda dlg: (self._ev_request_preview.set(), dlg.recreate().set_current())),
@ -393,6 +401,9 @@ class FaceAlignerTrainerApp:
dc.DlgChoice(short_name='v', row_def=f'| Previewing samples | {self._is_previewing_samples}',
on_choose=self.on_sample_generator_dlg_previewing_last_samples,
),
dc.DlgChoice(short_name='rw', row_def=f'| Random warp | {self.get_random_warp()}',
on_choose=lambda dlg: (self.set_random_warp(not self.get_random_warp()), dlg.recreate().set_current()) ),
dc.DlgChoice(short_name='r', row_def=f'| Running | {self._training_generator.is_running()}',
on_choose=lambda dlg: (self._training_generator.set_running(not self._training_generator.is_running()), dlg.recreate().set_current()) ),

View file

@ -60,6 +60,9 @@ class TrainingDataGenerator(lib_mp.MPWorker):
def set_resolution(self, resolution):
self._send_msg('resolution', resolution)
def set_random_warp(self, random_warp):
self._send_msg('random_warp', random_warp)
###### IMPL HOST
def _on_host_sub_message(self, process_id, name, *args, **kwargs):
@ -78,6 +81,7 @@ class TrainingDataGenerator(lib_mp.MPWorker):
self._running = False
self._batch_size = None
self._resolution = None
self._random_warp = None
self._n_batch = 0
self._img_aligned_list = []
@ -97,6 +101,8 @@ class TrainingDataGenerator(lib_mp.MPWorker):
self._batch_size, = args
elif name == 'resolution':
self._resolution, = args
elif name == 'random_warp':
self._random_warp, = args
elif name == 'running':
self._running , = args
@ -110,7 +116,10 @@ class TrainingDataGenerator(lib_mp.MPWorker):
if self._resolution is None:
print('Unable to start TrainingGenerator: resolution must be set')
running = False
if self._random_warp is None:
print('Unable to start TrainingGenerator: random_warp must be set')
running = False
if running:
if self._sent_buffers_count < 2:
batch_size = self._batch_size
@ -182,7 +191,7 @@ class TrainingDataGenerator(lib_mp.MPWorker):
rw_grid_ty=rw_grid_ty_range,
)
img_aligned_shifted = fw1.transform(img1, resolution, random_warp=True).astype(np.float32) / 255.0
img_aligned_shifted = fw1.transform(img1, resolution, random_warp=self._random_warp).astype(np.float32) / 255.0
ip = lib_img.ImageProcessor(img_aligned_shifted)
rnd = np.random