upgrade FaceAnimator module. Now uses https://github.com/wyhsirius/LIA model

This commit is contained in:
iperov 2022-09-16 12:10:15 +04:00
parent 42e835de65
commit 02de563a00
14 changed files with 144 additions and 201 deletions

View file

@ -3,6 +3,7 @@ from enum import IntEnum
import numpy as np
from xlib import os as lib_os
from xlib.face import FRect
from xlib.mp import csw as lib_csw
from xlib.python import all_is_not_None
@ -14,9 +15,11 @@ from .BackendBase import (BackendConnection, BackendDB, BackendHost,
class AlignMode(IntEnum):
FROM_RECT = 0
FROM_POINTS = 1
FROM_STATIC_RECT = 2
AlignModeNames = ['@FaceAligner.AlignMode.FROM_RECT',
'@FaceAligner.AlignMode.FROM_POINTS',
'@FaceAligner.AlignMode.FROM_STATIC_RECT',
]
class FaceAligner(BackendHost):
@ -57,7 +60,7 @@ class FaceAlignerWorker(BackendWorker):
cs.align_mode.select(state.align_mode if state.align_mode is not None else AlignMode.FROM_POINTS)
cs.face_coverage.enable()
cs.face_coverage.set_config(lib_csw.Number.Config(min=0.1, max=4.0, step=0.1, decimals=1, allow_instant_update=True))
cs.face_coverage.set_config(lib_csw.Number.Config(min=0.1, max=8.0, step=0.1, decimals=1, allow_instant_update=True))
cs.face_coverage.set_number(state.face_coverage if state.face_coverage is not None else 2.2)
cs.resolution.enable()
@ -74,11 +77,11 @@ class FaceAlignerWorker(BackendWorker):
cs.freeze_z_rotation.set_flag(state.freeze_z_rotation if state.freeze_z_rotation is not None else False)
cs.x_offset.enable()
cs.x_offset.set_config(lib_csw.Number.Config(min=-1, max=1, step=0.01, decimals=2, allow_instant_update=True))
cs.x_offset.set_config(lib_csw.Number.Config(min=-10, max=10, step=0.01, decimals=2, allow_instant_update=True))
cs.x_offset.set_number(state.x_offset if state.x_offset is not None else 0)
cs.y_offset.enable()
cs.y_offset.set_config(lib_csw.Number.Config(min=-1, max=1, step=0.01, decimals=2, allow_instant_update=True))
cs.y_offset.set_config(lib_csw.Number.Config(min=-10, max=10, step=0.01, decimals=2, allow_instant_update=True))
cs.y_offset.set_number(state.y_offset if state.y_offset is not None else 0)
def on_cs_align_mode(self, idx, align_mode):
@ -164,6 +167,7 @@ class FaceAlignerWorker(BackendWorker):
if face_ulmrks is not None:
fsi.face_resolution = state.resolution
H, W = frame_image.shape[:2]
if state.align_mode == AlignMode.FROM_RECT:
face_align_img, uni_mat = fsi.face_urect.cut(frame_image, coverage= state.face_coverage, output_size=state.resolution,
x_offset=state.x_offset, y_offset=state.y_offset)
@ -175,7 +179,10 @@ class FaceAlignerWorker(BackendWorker):
x_offset=state.x_offset,
y_offset=state.y_offset-0.08,
freeze_z_rotation=state.freeze_z_rotation)
elif state.align_mode == AlignMode.FROM_STATIC_RECT:
rect = FRect.from_ltrb([ 0.5 - (fsi.face_resolution/W)/2, 0.5 - (fsi.face_resolution/H)/2, 0.5 + (fsi.face_resolution/W)/2, 0.5 + (fsi.face_resolution/H)/2,])
face_align_img, uni_mat = rect.cut(frame_image, coverage= state.face_coverage, output_size=state.resolution,
x_offset=state.x_offset, y_offset=state.y_offset)
fsi.face_align_image_name = f'{frame_image_name}_{face_id}_aligned'
fsi.image_to_align_uni_mat = uni_mat

View file

@ -1,10 +1,8 @@
import re
import time
from pathlib import Path
import cv2
import numpy as np
from modelhub.onnx import TPSMM
from modelhub.onnx import LIA
from xlib import cv as lib_cv2
from xlib import os as lib_os
from xlib import path as lib_path
@ -29,7 +27,7 @@ class FaceAnimator(BackendHost):
def get_control_sheet(self) -> 'Sheet.Host': return super().get_control_sheet()
def _get_name(self):
return super()._get_name()# + f'{self._id}'
return super()._get_name()
class FaceAnimatorWorker(BackendWorker):
def get_state(self) -> 'WorkerState': return super().get_state()
@ -44,11 +42,10 @@ class FaceAnimatorWorker(BackendWorker):
self.pending_bcd = None
self.tpsmm_model = None
self.lia_model : LIA = None
self.animatable_img = None
self.driving_ref_kp = None
self.last_driving_kp = None
self.driving_ref_motion = None
lib_os.set_timer_resolution(1)
@ -58,14 +55,12 @@ class FaceAnimatorWorker(BackendWorker):
cs.animatable.call_on_selected(self.on_cs_animatable)
cs.animator_face_id.call_on_number(self.on_cs_animator_face_id)
cs.relative_mode.call_on_flag(self.on_cs_relative_mode)
cs.relative_power.call_on_number(self.on_cs_relative_power)
cs.update_animatables.call_on_signal(self.update_animatables)
cs.reset_reference_pose.call_on_signal(self.on_cs_reset_reference_pose)
cs.device.enable()
cs.device.set_choices( TPSMM.get_available_devices(), none_choice_name='@misc.menu_select')
cs.device.set_choices( LIA.get_available_devices(), none_choice_name='@misc.menu_select')
cs.device.select(state.device)
def update_animatables(self):
@ -76,7 +71,7 @@ class FaceAnimatorWorker(BackendWorker):
def on_cs_device(self, idx, device):
state, cs = self.get_state(), self.get_control_sheet()
if device is not None and state.device == device:
self.tpsmm_model = TPSMM(device)
self.lia_model = LIA(device)
cs.animatable.enable()
self.update_animatables()
@ -86,11 +81,8 @@ class FaceAnimatorWorker(BackendWorker):
cs.animator_face_id.set_config(lib_csw.Number.Config(min=0, max=16, step=1, decimals=0, allow_instant_update=True))
cs.animator_face_id.set_number(state.animator_face_id if state.animator_face_id is not None else 0)
cs.relative_mode.enable()
cs.relative_mode.set_flag(state.relative_mode if state.relative_mode is not None else True)
cs.relative_power.enable()
cs.relative_power.set_config(lib_csw.Number.Config(min=0.0, max=1.0, step=0.01, decimals=2, allow_instant_update=True))
cs.relative_power.set_config(lib_csw.Number.Config(min=0.0, max=2.0, step=0.01, decimals=2, allow_instant_update=True))
cs.relative_power.set_number(state.relative_power if state.relative_power is not None else 1.0)
cs.update_animatables.enable()
@ -105,20 +97,15 @@ class FaceAnimatorWorker(BackendWorker):
state.animatable = animatable
self.animatable_img = None
self.animatable_kp = None
self.driving_ref_kp = None
self.driving_ref_motion = None
if animatable is not None:
try:
W,H = self.tpsmm_model.get_input_size()
W,H = self.lia_model.get_input_size()
ip = ImageProcessor(lib_cv2.imread(self.animatables_path / animatable))
ip.fit_in(TW=W, TH=H, pad_to_target=True, allow_upscale=True)
animatable_img = ip.get_image('HWC')
animatable_kp = self.tpsmm_model.extract_kp(animatable_img)
self.animatable_img = animatable_img
self.animatable_kp = animatable_kp
self.animatable_img = ip.get_image('HWC')
except Exception as e:
cs.animatable.unselect()
@ -133,13 +120,6 @@ class FaceAnimatorWorker(BackendWorker):
cs.animator_face_id.set_number(animator_face_id)
self.save_state()
self.reemit_frame_signal.send()
def on_cs_relative_mode(self, relative_mode):
state, cs = self.get_state(), self.get_control_sheet()
state.relative_mode = relative_mode
self.save_state()
self.reemit_frame_signal.send()
def on_cs_relative_power(self, relative_power):
state, cs = self.get_state(), self.get_control_sheet()
cfg = cs.relative_power.get_config()
@ -149,7 +129,7 @@ class FaceAnimatorWorker(BackendWorker):
self.reemit_frame_signal.send()
def on_cs_reset_reference_pose(self):
self.driving_ref_kp = self.last_driving_kp
self.driving_ref_motion = None
self.reemit_frame_signal.send()
def on_tick(self):
@ -162,8 +142,8 @@ class FaceAnimatorWorker(BackendWorker):
if bcd is not None:
bcd.assign_weak_heap(self.weak_heap)
tpsmm_model = self.tpsmm_model
if tpsmm_model is not None and self.animatable_img is not None:
lia_model = self.lia_model
if lia_model is not None and self.animatable_img is not None:
for i, fsi in enumerate(bcd.get_face_swap_info_list()):
if state.animator_face_id == i:
@ -172,14 +152,10 @@ class FaceAnimatorWorker(BackendWorker):
_,H,W,_ = ImageProcessor(face_align_image).get_dims()
driving_kp = self.last_driving_kp = tpsmm_model.extract_kp(face_align_image)
if self.driving_ref_motion is None:
self.driving_ref_motion = lia_model.extract_motion(face_align_image)
if self.driving_ref_kp is None:
self.driving_ref_kp = driving_kp
anim_image = tpsmm_model.generate(self.animatable_img, self.animatable_kp, driving_kp,
self.driving_ref_kp if state.relative_mode else None,
relative_power=state.relative_power)
anim_image = lia_model.generate(self.animatable_img, face_align_image, self.driving_ref_motion, power=state.relative_power)
anim_image = ImageProcessor(anim_image).resize((W,H)).get_image('HWC')
fsi.face_swap_image_name = f'{fsi.face_align_image_name}_swapped'
@ -203,7 +179,6 @@ class Sheet:
self.device = lib_csw.DynamicSingleSwitch.Client()
self.animatable = lib_csw.DynamicSingleSwitch.Client()
self.animator_face_id = lib_csw.Number.Client()
self.relative_mode = lib_csw.Flag.Client()
self.update_animatables = lib_csw.Signal.Client()
self.reset_reference_pose = lib_csw.Signal.Client()
self.relative_power = lib_csw.Number.Client()
@ -214,7 +189,6 @@ class Sheet:
self.device = lib_csw.DynamicSingleSwitch.Host()
self.animatable = lib_csw.DynamicSingleSwitch.Host()
self.animator_face_id = lib_csw.Number.Host()
self.relative_mode = lib_csw.Flag.Host()
self.update_animatables = lib_csw.Signal.Host()
self.reset_reference_pose = lib_csw.Signal.Host()
self.relative_power = lib_csw.Number.Host()
@ -223,5 +197,4 @@ class WorkerState(BackendWorkerState):
device = None
animatable : str = None
animator_face_id : int = None
relative_mode : bool = None
relative_power : float = None

View file

@ -32,9 +32,7 @@ class QFaceAnimator(QBackendPanel):
q_animator_face_id_label = QLabelPopupInfo(label=L('@QFaceAnimator.animator_face_id') )
q_animator_face_id = QSpinBoxCSWNumber(cs.animator_face_id, reflect_state_widgets=[q_animator_face_id_label])
q_relative_mode_label = QLabelPopupInfo(label=L('@QFaceAnimator.relative_mode') )
q_relative_mode = QCheckBoxCSWFlag(cs.relative_mode, reflect_state_widgets=[q_relative_mode_label])
q_relative_power_label = QLabelPopupInfo(label=L('@QFaceAnimator.relative_power') )
q_relative_power = QSliderCSWNumber(cs.relative_power)
q_update_animatables = QXPushButtonCSWSignal(cs.update_animatables, image=QXImageDB.reload_outline('light gray'), button_size=(24,22) )
@ -52,9 +50,8 @@ class QFaceAnimator(QBackendPanel):
grid_l.addWidget(q_animator_face_id_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter )
grid_l.addWidget(q_animator_face_id, row, 1, alignment=qtx.AlignLeft )
row += 1
grid_l.addWidget(q_relative_mode_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter )
grid_l.addLayout(qtx.QXHBoxLayout([q_relative_mode,2,q_relative_power]), row, 1, alignment=qtx.AlignLeft )
grid_l.addWidget(q_relative_power_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter )
grid_l.addWidget(q_relative_power, row, 1 )
row += 1
grid_l.addWidget(q_reset_reference_pose, row, 0, 1, 2 )

View file

@ -656,13 +656,13 @@ class Localization:
'it-IT' : 'Animatore Face ID',
'ja-JP' : '動かす顔のID番号'},
'QFaceAnimator.relative_mode':{
'en-US' : 'Relative mode',
'ru-RU' : 'Относительный режим',
'zh-CN' : '相对模式',
'es-ES' : 'Modo relativo',
'it-IT' : 'Modalità relativa',
'ja-JP' : '相対モード'},
'QFaceAnimator.relative_power':{
'en-US' : 'Relative power',
'ru-RU' : 'Относительная сила',
'zh-CN' : 'Relative power',
'es-ES' : 'Relative power',
'it-IT' : 'Relative power',
'ja-JP' : 'Relative power'},
'QFaceAnimator.reset_reference_pose':{
'en-US' : 'Reset reference pose',
@ -1144,6 +1144,14 @@ class Localization:
'it-IT' : 'Da punti',
'ja-JP' : '点から'},
'FaceAligner.AlignMode.FROM_STATIC_RECT':{
'en-US' : 'From static rect',
'ru-RU' : 'Из статичного прямоугольника',
'zh-CN' : '从一个静态的矩形',
'es-ES' : 'From static rect',
'it-IT' : 'From static rect',
'ja-JP' : 'From static rect'},
'FaceSwapper.model_information':{
'en-US' : 'Model information',
'ru-RU' : 'Информация о модели',

89
modelhub/onnx/LIA/LIA.py Normal file
View file

@ -0,0 +1,89 @@
from pathlib import Path
from typing import List
import numpy as np
from xlib.file import SplittedFile
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class LIA:
"""
Latent Image Animator: Learning to Animate Images via Latent Space Navigation
https://github.com/wyhsirius/LIA
arguments
device_info ORTDeviceInfo
use LIA.get_available_devices()
to determine a list of avaliable devices accepted by model
raises
Exception
"""
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
return get_available_devices_info()
def __init__(self, device_info : ORTDeviceInfo):
if device_info not in LIA.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for LIA')
generator_path = Path(__file__).parent / 'generator.onnx'
SplittedFile.merge(generator_path, delete_parts=False)
if not generator_path.exists():
raise FileNotFoundError(f'{generator_path} not found')
self._generator = InferenceSession_with_device(str(generator_path), device_info)
def get_input_size(self):
"""
returns optimal (Width,Height) for input images, thus you can resize source image to avoid extra load
"""
return (256,256)
def extract_motion(self, img : np.ndarray):
"""
Extract motion from image
arguments
img np.ndarray HW HWC 1HWC uint8/float32
"""
feed_img = ImageProcessor(img).resize(self.get_input_size()).ch(3).swap_ch().to_ufloat32(as_tanh=True).get_image('NCHW')
return self._generator.run(['out_drv_motion'], {'in_src': np.zeros((1,3,256,256), np.float32),
'in_drv': feed_img,
'in_drv_start_motion': np.zeros((1,20), np.float32),
'in_power' : np.zeros((1,), np.float32)
})[0]
def generate(self, img_source : np.ndarray, img_driver : np.ndarray, driver_start_motion : np.ndarray, power):
"""
arguments
img_source np.ndarray HW HWC 1HWC uint8/float32
img_driver np.ndarray HW HWC 1HWC uint8/float32
driver_start_motion reference motion for driver
"""
ip = ImageProcessor(img_source)
dtype = ip.get_dtype()
_,H,W,_ = ip.get_dims()
out = self._generator.run(['out'], {'in_src': ip.resize(self.get_input_size()).ch(3).swap_ch().to_ufloat32(as_tanh=True).get_image('NCHW'),
'in_drv' : ImageProcessor(img_driver).resize(self.get_input_size()).ch(3).swap_ch().to_ufloat32(as_tanh=True).get_image('NCHW'),
'in_drv_start_motion' : driver_start_motion,
'in_power' : np.array([power], np.float32)
})[0].transpose(0,2,3,1)[0]
out = ImageProcessor(out).to_dtype(dtype, from_tanh=True).resize((W,H)).swap_ch().get_image('HWC')
return out

View file

@ -1,131 +0,0 @@
from pathlib import Path
from typing import List
import cv2
import numpy as np
from xlib.file import SplittedFile
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class TPSMM:
"""
[CVPR2022] Thin-Plate Spline Motion Model for Image Animation
https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model
arguments
device_info ORTDeviceInfo
use TPSMM.get_available_devices()
to determine a list of avaliable devices accepted by model
raises
Exception
"""
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
return get_available_devices_info()
def __init__(self, device_info : ORTDeviceInfo):
if device_info not in TPSMM.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for TPSMM')
generator_path = Path(__file__).parent / 'generator.onnx'
SplittedFile.merge(generator_path, delete_parts=False)
if not generator_path.exists():
raise FileNotFoundError(f'{generator_path} not found')
kp_detector_path = Path(__file__).parent / 'kp_detector.onnx'
if not kp_detector_path.exists():
raise FileNotFoundError(f'{kp_detector_path} not found')
self._generator = InferenceSession_with_device(str(generator_path), device_info)
self._kp_detector = InferenceSession_with_device(str(kp_detector_path), device_info)
def get_input_size(self):
"""
returns optimal (Width,Height) for input images, thus you can resize source image to avoid extra load
"""
return (256,256)
def extract_kp(self, img : np.ndarray):
"""
Extract keypoints from image
arguments
img np.ndarray HW HWC 1HWC uint8/float32
"""
feed_img = ImageProcessor(img).resize(self.get_input_size()).swap_ch().to_ufloat32().ch(3).get_image('NCHW')
return self._kp_detector.run(None, {'in': feed_img})[0]
def generate(self, img_source : np.ndarray, kp_source : np.ndarray, kp_driver : np.ndarray, kp_driver_ref : np.ndarray = None, relative_power : float = 1.0):
"""
arguments
img_source np.ndarray HW HWC 1HWC uint8/float32
kp_driver_ref specify to work in kp relative mode
"""
if kp_driver_ref is not None:
kp_driver = self.calc_relative_kp(kp_source=kp_source, kp_driver=kp_driver, kp_driver_ref=kp_driver_ref, power=relative_power)
theta, control_points, control_params = self.create_transformations_params(kp_source, kp_driver)
ip = ImageProcessor(img_source)
dtype = ip.get_dtype()
_,H,W,_ = ip.get_dims()
feed_img = ip.resize(self.get_input_size()).to_ufloat32().ch(3).get_image('NCHW')
out = self._generator.run(None, {'in': feed_img,
'theta' : theta,
'control_points' : control_points,
'control_params' : control_params,
'kp_driver' : kp_driver,
'kp_source' : kp_source,
})[0].transpose(0,2,3,1)[0]
out = ImageProcessor(out).resize( (W,H)).to_dtype(dtype).get_image('HWC')
return out
def calc_relative_kp(self, kp_source, kp_driver, kp_driver_ref, power = 1.0):
source_area = np.array([ cv2.contourArea(cv2.convexHull(pts)) for pts in kp_source ], dtype=kp_source.dtype)
driving_area = np.array([ cv2.contourArea(cv2.convexHull(pts)) for pts in kp_driver_ref ], dtype=kp_driver_ref.dtype)
movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
return kp_source + (kp_driver - kp_driver_ref) * movement_scale[:,None,None] * power
def create_transformations_params(self, kp_source, kp_driver):
kp_num=10
kp_sub_num=5
kp_d = kp_driver.reshape(-1, kp_num, kp_sub_num, 2)
kp_s = kp_source.reshape(-1, kp_num, kp_sub_num, 2)
K = np.linalg.norm(kp_d[:,:,:,None]-kp_d[:,:,None,:], ord=2, axis=4) ** 2
K = K * np.log(K+1e-9)
kp_1d = np.concatenate([kp_d, np.ones(kp_d.shape[:-1], dtype=kp_d.dtype)[...,None] ], -1)
P = np.concatenate([kp_1d, np.zeros(kp_d.shape[:2] + (3, 3), dtype=kp_d.dtype)], 2)
L = np.concatenate([K,kp_1d.transpose(0,1,3,2)],2)
L = np.concatenate([L,P],3)
Y = np.concatenate([kp_s, np.zeros(kp_d.shape[:2] + (3, 2), dtype=kp_d.dtype)], 2)
one = np.broadcast_to( np.eye(Y.shape[2], dtype=kp_d.dtype), L.shape)*0.01
L = L + one
param = np.matmul(np.linalg.inv(L),Y)
theta = param[:,:,kp_sub_num:,:].transpose(0,1,3,2)
control_points = kp_d
control_params = param[:,:,:kp_sub_num,:]
return theta, control_points, control_params

View file

@ -3,4 +3,4 @@ from .FaceMesh.FaceMesh import FaceMesh
from .S3FD.S3FD import S3FD
from .YoloV5Face.YoloV5Face import YoloV5Face
from .InsightFace2d106.InsightFace2D106 import InsightFace2D106
from .TPSMM.TPSMM import TPSMM
from .LIA.LIA import LIA

View file

@ -9,7 +9,7 @@ from xlib import cv as lib_cv
repo_root = Path(__file__).parent.parent
large_files_list = [ (repo_root / 'modelhub' / 'onnx' / 'S3FD' / 'S3FD.onnx', 48*1024*1024),
(repo_root / 'modelhub' / 'onnx' / 'TPSMM' / 'generator.onnx', 50*1024*1024),
(repo_root / 'modelhub' / 'onnx' / 'LIA' / 'generator.onnx', 48*1024*1024),
(repo_root / 'modelhub' / 'torch' / 'S3FD' / 'S3FD.pth', 48*1024*1024),
(repo_root / 'modelhub' / 'cv' / 'FaceMarkerLBF' / 'lbfmodel.yaml', 34*1024*1024),
]