mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 13:32:09 -07:00
Synthesize new faces from existing ones by relighting them using DeepPortraitRelighter network. With the relighted faces neural network will better reproduce face shadows. Therefore you can synthsize shadowed faces from fully lit faceset. https://i.imgur.com/wxcmQoi.jpg as a result, better fakes on dark faces: https://i.imgur.com/5xXIbz5.jpg in OpenCL build Relighter runs on CPU, install pytorch directly via pip install, look at requirements
320 lines
12 KiB
Python
320 lines
12 KiB
Python
import pickle
|
|
import struct
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from facelib import FaceType
|
|
from imagelib import IEPolys
|
|
from utils.struct_utils import *
|
|
from interact import interact as io
|
|
|
|
class DFLJPG(object):
|
|
def __init__(self):
|
|
self.data = b""
|
|
self.length = 0
|
|
self.chunks = []
|
|
self.dfl_dict = None
|
|
self.shape = (0,0,0)
|
|
|
|
@staticmethod
|
|
def load_raw(filename):
|
|
try:
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
except:
|
|
raise FileNotFoundError(filename)
|
|
|
|
try:
|
|
inst = DFLJPG()
|
|
inst.data = data
|
|
inst.length = len(data)
|
|
inst_length = inst.length
|
|
chunks = []
|
|
data_counter = 0
|
|
while data_counter < inst_length:
|
|
chunk_m_l, chunk_m_h = struct.unpack ("BB", data[data_counter:data_counter+2])
|
|
data_counter += 2
|
|
|
|
if chunk_m_l != 0xFF:
|
|
raise ValueError("No Valid JPG info")
|
|
|
|
chunk_name = None
|
|
chunk_size = None
|
|
chunk_data = None
|
|
chunk_ex_data = None
|
|
is_unk_chunk = False
|
|
|
|
if chunk_m_h & 0xF0 == 0xD0:
|
|
n = chunk_m_h & 0x0F
|
|
|
|
if n >= 0 and n <= 7:
|
|
chunk_name = "RST%d" % (n)
|
|
chunk_size = 0
|
|
elif n == 0x8:
|
|
chunk_name = "SOI"
|
|
chunk_size = 0
|
|
if len(chunks) != 0:
|
|
raise Exception("")
|
|
elif n == 0x9:
|
|
chunk_name = "EOI"
|
|
chunk_size = 0
|
|
elif n == 0xA:
|
|
chunk_name = "SOS"
|
|
elif n == 0xB:
|
|
chunk_name = "DQT"
|
|
elif n == 0xD:
|
|
chunk_name = "DRI"
|
|
chunk_size = 2
|
|
else:
|
|
is_unk_chunk = True
|
|
elif chunk_m_h & 0xF0 == 0xC0:
|
|
n = chunk_m_h & 0x0F
|
|
if n == 0:
|
|
chunk_name = "SOF0"
|
|
elif n == 2:
|
|
chunk_name = "SOF2"
|
|
elif n == 4:
|
|
chunk_name = "DHT"
|
|
else:
|
|
is_unk_chunk = True
|
|
elif chunk_m_h & 0xF0 == 0xE0:
|
|
n = chunk_m_h & 0x0F
|
|
chunk_name = "APP%d" % (n)
|
|
else:
|
|
is_unk_chunk = True
|
|
|
|
if is_unk_chunk:
|
|
raise ValueError("Unknown chunk %X" % (chunk_m_h) )
|
|
|
|
if chunk_size == None: #variable size
|
|
chunk_size, = struct.unpack (">H", data[data_counter:data_counter+2])
|
|
chunk_size -= 2
|
|
data_counter += 2
|
|
|
|
if chunk_size > 0:
|
|
chunk_data = data[data_counter:data_counter+chunk_size]
|
|
data_counter += chunk_size
|
|
|
|
if chunk_name == "SOS":
|
|
c = data_counter
|
|
while c < inst_length and (data[c] != 0xFF or data[c+1] != 0xD9):
|
|
c += 1
|
|
|
|
chunk_ex_data = data[data_counter:c]
|
|
data_counter = c
|
|
|
|
chunks.append ({'name' : chunk_name,
|
|
'm_h' : chunk_m_h,
|
|
'data' : chunk_data,
|
|
'ex_data' : chunk_ex_data,
|
|
})
|
|
inst.chunks = chunks
|
|
|
|
return inst
|
|
except Exception as e:
|
|
raise Exception ("Corrupted JPG file: %s" % (str(e)))
|
|
|
|
@staticmethod
|
|
def load(filename):
|
|
try:
|
|
inst = DFLJPG.load_raw (filename)
|
|
inst.dfl_dict = None
|
|
|
|
for chunk in inst.chunks:
|
|
if chunk['name'] == 'APP0':
|
|
d, c = chunk['data'], 0
|
|
c, id, _ = struct_unpack (d, c, "=4sB")
|
|
|
|
if id == b"JFIF":
|
|
c, ver_major, ver_minor, units, Xdensity, Ydensity, Xthumbnail, Ythumbnail = struct_unpack (d, c, "=BBBHHBB")
|
|
#if units == 0:
|
|
# inst.shape = (Ydensity, Xdensity, 3)
|
|
else:
|
|
raise Exception("Unknown jpeg ID: %s" % (id) )
|
|
elif chunk['name'] == 'SOF0' or chunk['name'] == 'SOF2':
|
|
d, c = chunk['data'], 0
|
|
c, precision, height, width = struct_unpack (d, c, ">BHH")
|
|
inst.shape = (height, width, 3)
|
|
|
|
elif chunk['name'] == 'APP15':
|
|
if type(chunk['data']) == bytes:
|
|
inst.dfl_dict = pickle.loads(chunk['data'])
|
|
|
|
if (inst.dfl_dict is not None):
|
|
if 'face_type' not in inst.dfl_dict:
|
|
inst.dfl_dict['face_type'] = FaceType.toString (FaceType.FULL)
|
|
|
|
if 'fanseg_mask' in inst.dfl_dict:
|
|
fanseg_mask = inst.dfl_dict['fanseg_mask']
|
|
if fanseg_mask is not None:
|
|
numpyarray = np.asarray( inst.dfl_dict['fanseg_mask'], dtype=np.uint8)
|
|
inst.dfl_dict['fanseg_mask'] = cv2.imdecode(numpyarray, cv2.IMREAD_UNCHANGED)
|
|
|
|
if inst.dfl_dict == None:
|
|
return None
|
|
|
|
return inst
|
|
except Exception as e:
|
|
print (e)
|
|
return None
|
|
|
|
@staticmethod
|
|
def embed_data(filename, face_type=None,
|
|
landmarks=None,
|
|
ie_polys=None,
|
|
source_filename=None,
|
|
source_rect=None,
|
|
source_landmarks=None,
|
|
image_to_face_mat=None,
|
|
fanseg_mask=None,
|
|
pitch_yaw_roll=None,
|
|
eyebrows_expand_mod=None,
|
|
relighted=None,
|
|
**kwargs
|
|
):
|
|
|
|
if fanseg_mask is not None:
|
|
fanseg_mask = np.clip ( (fanseg_mask*255).astype(np.uint8), 0, 255 )
|
|
|
|
ret, buf = cv2.imencode( '.jpg', fanseg_mask, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
|
|
|
|
if ret and len(buf) < 60000:
|
|
fanseg_mask = buf
|
|
else:
|
|
io.log_err("Unable to encode fanseg_mask for %s" % (filename) )
|
|
fanseg_mask = None
|
|
|
|
inst = DFLJPG.load_raw (filename)
|
|
inst.setDFLDictData ({
|
|
'face_type': face_type,
|
|
'landmarks': landmarks,
|
|
'ie_polys' : ie_polys.dump() if ie_polys is not None else None,
|
|
'source_filename': source_filename,
|
|
'source_rect': source_rect,
|
|
'source_landmarks': source_landmarks,
|
|
'image_to_face_mat': image_to_face_mat,
|
|
'fanseg_mask' : fanseg_mask,
|
|
'pitch_yaw_roll' : pitch_yaw_roll,
|
|
'eyebrows_expand_mod' : eyebrows_expand_mod,
|
|
'relighted' : relighted
|
|
})
|
|
|
|
try:
|
|
with open(filename, "wb") as f:
|
|
f.write ( inst.dump() )
|
|
except:
|
|
raise Exception( 'cannot save %s' % (filename) )
|
|
|
|
def embed_and_set(self, filename, face_type=None,
|
|
landmarks=None,
|
|
ie_polys=None,
|
|
source_filename=None,
|
|
source_rect=None,
|
|
source_landmarks=None,
|
|
image_to_face_mat=None,
|
|
fanseg_mask=None,
|
|
pitch_yaw_roll=None,
|
|
eyebrows_expand_mod=None,
|
|
relighted=None,
|
|
**kwargs
|
|
):
|
|
if face_type is None: face_type = self.get_face_type()
|
|
if landmarks is None: landmarks = self.get_landmarks()
|
|
if ie_polys is None: ie_polys = self.get_ie_polys()
|
|
if source_filename is None: source_filename = self.get_source_filename()
|
|
if source_rect is None: source_rect = self.get_source_rect()
|
|
if source_landmarks is None: source_landmarks = self.get_source_landmarks()
|
|
if image_to_face_mat is None: image_to_face_mat = self.get_image_to_face_mat()
|
|
if fanseg_mask is None: fanseg_mask = self.get_fanseg_mask()
|
|
if pitch_yaw_roll is None: pitch_yaw_roll = self.get_pitch_yaw_roll()
|
|
if eyebrows_expand_mod is None: eyebrows_expand_mod = self.get_eyebrows_expand_mod()
|
|
if relighted is None: relighted = self.get_relighted()
|
|
DFLJPG.embed_data (filename, face_type=face_type,
|
|
landmarks=landmarks,
|
|
ie_polys=ie_polys,
|
|
source_filename=source_filename,
|
|
source_rect=source_rect,
|
|
source_landmarks=source_landmarks,
|
|
image_to_face_mat=image_to_face_mat,
|
|
fanseg_mask=fanseg_mask,
|
|
pitch_yaw_roll=pitch_yaw_roll,
|
|
relighted=relighted)
|
|
|
|
def remove_ie_polys(self):
|
|
self.dfl_dict['ie_polys'] = None
|
|
|
|
def remove_fanseg_mask(self):
|
|
self.dfl_dict['fanseg_mask'] = None
|
|
|
|
def dump(self):
|
|
data = b""
|
|
|
|
for chunk in self.chunks:
|
|
data += struct.pack ("BB", 0xFF, chunk['m_h'] )
|
|
chunk_data = chunk['data']
|
|
if chunk_data is not None:
|
|
data += struct.pack (">H", len(chunk_data)+2 )
|
|
data += chunk_data
|
|
|
|
chunk_ex_data = chunk['ex_data']
|
|
if chunk_ex_data is not None:
|
|
data += chunk_ex_data
|
|
|
|
return data
|
|
|
|
def get_shape(self):
|
|
return self.shape
|
|
|
|
def get_height(self):
|
|
for chunk in self.chunks:
|
|
if type(chunk) == IHDR:
|
|
return chunk.height
|
|
return 0
|
|
|
|
def getDFLDictData(self):
|
|
return self.dfl_dict
|
|
|
|
def setDFLDictData (self, dict_data=None):
|
|
self.dfl_dict = dict_data
|
|
|
|
for chunk in self.chunks:
|
|
if chunk['name'] == 'APP15':
|
|
self.chunks.remove(chunk)
|
|
break
|
|
|
|
last_app_chunk = 0
|
|
for i, chunk in enumerate (self.chunks):
|
|
if chunk['m_h'] & 0xF0 == 0xE0:
|
|
last_app_chunk = i
|
|
|
|
dflchunk = {'name' : 'APP15',
|
|
'm_h' : 0xEF,
|
|
'data' : pickle.dumps(dict_data),
|
|
'ex_data' : None,
|
|
}
|
|
self.chunks.insert (last_app_chunk+1, dflchunk)
|
|
|
|
def get_face_type(self): return self.dfl_dict['face_type']
|
|
def get_landmarks(self): return np.array ( self.dfl_dict['landmarks'] )
|
|
def get_ie_polys(self): return IEPolys.load(self.dfl_dict.get('ie_polys',None))
|
|
def get_source_filename(self): return self.dfl_dict['source_filename']
|
|
def get_source_rect(self): return self.dfl_dict['source_rect']
|
|
def get_source_landmarks(self): return np.array ( self.dfl_dict['source_landmarks'] )
|
|
def get_image_to_face_mat(self):
|
|
mat = self.dfl_dict.get ('image_to_face_mat', None)
|
|
if mat is not None:
|
|
return np.array (mat)
|
|
return None
|
|
def get_fanseg_mask(self):
|
|
fanseg_mask = self.dfl_dict.get ('fanseg_mask', None)
|
|
if fanseg_mask is not None:
|
|
return np.clip ( np.array (fanseg_mask) / 255.0, 0.0, 1.0 )[...,np.newaxis]
|
|
return None
|
|
def get_pitch_yaw_roll(self):
|
|
return self.dfl_dict.get ('pitch_yaw_roll', None)
|
|
def get_eyebrows_expand_mod(self):
|
|
return self.dfl_dict.get ('eyebrows_expand_mod', None)
|
|
def get_relighted(self):
|
|
return self.dfl_dict.get ('relighted', False)
|
|
|