DeepFaceLab/core/leras/layers/BatchNorm2D.py
2023-02-07 11:17:04 +01:00

48 lines
No EOL
1.9 KiB
Python

from core.leras import nn
tf = nn.tf
class BatchNorm2D(nn.LayerBase):
"""
currently not for training
"""
def __init__(self, dim, eps=1e-05, momentum=0.1, dtype=None, **kwargs):
self.dim = dim
self.eps = eps
self.momentum = momentum
if dtype is None:
dtype = nn.floatx
self.dtype = dtype
super().__init__(**kwargs)
def build_weights(self):
self.weight = tf.get_variable("weight", (self.dim,), dtype=self.dtype, initializer=tf.initializers.ones() )
self.bias = tf.get_variable("bias", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros() )
self.running_mean = tf.get_variable("running_mean", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
self.running_var = tf.get_variable("running_var", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
def get_weights(self):
return [self.weight, self.bias, self.running_mean, self.running_var]
def forward(self, x):
if nn.data_format == "NHWC":
shape = (1,1,1,self.dim)
else:
shape = (1,self.dim,1,1)
weight = tf.reshape ( self.weight , shape )
bias = tf.reshape ( self.bias , shape )
running_mean = tf.reshape ( self.running_mean, shape )
running_var = tf.reshape ( self.running_var , shape )
x_mean = tf.math.reduce_mean(x, axis=[0] + nn.conv2d_spatial_axes, keepdims=True )
running_mean = running_mean * self.momentum + x_mean * (1 - self.momentum)
x_var = tf.math.reduce_variance(x, axis=[0] + nn.conv2d_spatial_axes, keepdims=True )
running_var = running_var * self.momentum + x_var * (1 - self.momentum)
x = (x - running_mean) / tf.sqrt( running_var + self.eps )
x *= weight
x += bias
return x
nn.BatchNorm2D = BatchNorm2D