DeepFaceLab/merger/MergerConfig.py
Colombo f1d115b63b added experimental face type 'whole_face'
Basic usage instruction: https://i.imgur.com/w7LkId2.jpg

	'whole_face' requires skill in Adobe After Effects.

	For using whole_face you have to extract whole_face's by using
	4) data_src extract whole_face
	and
	5) data_dst extract whole_face
	Images will be extracted in 512 resolution, so they can be used for regular full_face's and half_face's.

	'whole_face' covers whole area of face include forehead in training square,
	but training mask is still 'full_face'
	therefore it requires manual final masking and composing in Adobe After Effects.

added option 'masked_training'
	This option is available only for 'whole_face' type.
	Default is ON.
	Masked training clips training area to full_face mask,
	thus network will train the faces properly.
	When the face is trained enough, disable this option to train all area of the frame.
	Merge with 'raw-rgb' mode, then use Adobe After Effects to manually mask, tune color, and compose whole face include forehead.
2020-02-21 16:21:04 +04:00

349 lines
14 KiB
Python

import numpy as np
import copy
from facelib import FaceType
from core.interact import interact as io
class MergerConfig(object):
TYPE_NONE = 0
TYPE_MASKED = 1
TYPE_FACE_AVATAR = 2
####
TYPE_IMAGE = 3
TYPE_IMAGE_WITH_LANDMARKS = 4
def __init__(self, type=0,
sharpen_mode=0,
blursharpen_amount=0,
**kwargs
):
self.type = type
self.superres_func = None
self.blursharpen_func = None
self.fanseg_input_size = None
self.fanseg_extract_func = None
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
#default changeable params
self.sharpen_mode = sharpen_mode
self.blursharpen_amount = blursharpen_amount
def copy(self):
return copy.copy(self)
#overridable
def ask_settings(self):
s = """Choose sharpen mode: \n"""
for key in self.sharpen_dict.keys():
s += f"""({key}) {self.sharpen_dict[key]}\n"""
io.log_info(s)
self.sharpen_mode = io.input_int ("", 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
if self.sharpen_mode != 0:
self.blursharpen_amount = np.clip ( io.input_int ("Choose blur/sharpen amount", 0, add_info="-100..100"), -100, 100 )
def toggle_sharpen_mode(self):
a = list( self.sharpen_dict.keys() )
self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ]
def add_blursharpen_amount(self, diff):
self.blursharpen_amount = np.clip ( self.blursharpen_amount+diff, -100, 100)
#overridable
def get_config(self):
d = self.__dict__.copy()
d.pop('type')
return d
#overridable
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfig):
return self.sharpen_mode == other.sharpen_mode and \
self.blursharpen_amount == other.blursharpen_amount
return False
#overridable
def to_string(self, filename):
r = ""
r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n"
r += f"blursharpen_amount : {self.blursharpen_amount}\n"
return r
mode_dict = {0:'original',
1:'overlay',
2:'hist-match',
3:'seamless',
4:'seamless-hist-match',
5:'raw-rgb',}
mode_str_dict = {}
for key in mode_dict.keys():
mode_str_dict[ mode_dict[key] ] = key
full_face_mask_mode_dict = {1:'learned',
2:'dst',
3:'FAN-prd',
4:'FAN-dst',
5:'FAN-prd*FAN-dst',
6:'learned*FAN-prd*FAN-dst'}
half_face_mask_mode_dict = {1:'learned',
2:'dst',
4:'FAN-dst',
7:'learned*FAN-dst'}
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
class MergerConfigMasked(MergerConfig):
def __init__(self, face_type=FaceType.FULL,
default_mode = 'overlay',
mode='overlay',
masked_hist_match=True,
hist_match_threshold = 238,
mask_mode = 1,
erode_mask_modifier = 0,
blur_mask_modifier = 0,
motion_blur_power = 0,
output_face_scale = 0,
super_resolution_power = 0,
color_transfer_mode = ctm_str_dict['rct'],
image_denoise_power = 0,
bicubic_degrade_power = 0,
color_degrade_power = 0,
**kwargs
):
super().__init__(type=MergerConfig.TYPE_MASKED, **kwargs)
self.face_type = face_type
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE ]:
raise ValueError("MergerConfigMasked does not support this type of face.")
self.default_mode = default_mode
#default changeable params
if mode not in mode_str_dict:
mode = mode_dict[1]
self.mode = mode
self.masked_hist_match = masked_hist_match
self.hist_match_threshold = hist_match_threshold
self.mask_mode = mask_mode
self.erode_mask_modifier = erode_mask_modifier
self.blur_mask_modifier = blur_mask_modifier
self.motion_blur_power = motion_blur_power
self.output_face_scale = output_face_scale
self.super_resolution_power = super_resolution_power
self.color_transfer_mode = color_transfer_mode
self.image_denoise_power = image_denoise_power
self.bicubic_degrade_power = bicubic_degrade_power
self.color_degrade_power = color_degrade_power
def copy(self):
return copy.copy(self)
def set_mode (self, mode):
self.mode = mode_dict.get (mode, self.default_mode)
def toggle_masked_hist_match(self):
if self.mode == 'hist-match':
self.masked_hist_match = not self.masked_hist_match
def add_hist_match_threshold(self, diff):
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
def toggle_mask_mode(self):
if self.face_type == FaceType.FULL:
a = list( full_face_mask_mode_dict.keys() )
else:
a = list( half_face_mask_mode_dict.keys() )
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
def add_erode_mask_modifier(self, diff):
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -400, 400)
def add_blur_mask_modifier(self, diff):
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , 0, 400)
def add_motion_blur_power(self, diff):
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
def add_output_face_scale(self, diff):
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
def toggle_color_transfer_mode(self):
self.color_transfer_mode = (self.color_transfer_mode+1) % ( max(ctm_dict.keys())+1 )
def add_super_resolution_power(self, diff):
self.super_resolution_power = np.clip ( self.super_resolution_power+diff , 0, 100)
def add_color_degrade_power(self, diff):
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
def add_image_denoise_power(self, diff):
self.image_denoise_power = np.clip ( self.image_denoise_power+diff, 0, 500)
def add_bicubic_degrade_power(self, diff):
self.bicubic_degrade_power = np.clip ( self.bicubic_degrade_power+diff, 0, 100)
def ask_settings(self):
s = """Choose mode: \n"""
for key in mode_dict.keys():
s += f"""({key}) {mode_dict[key]}\n"""
io.log_info(s)
mode = io.input_int ("", mode_str_dict.get(self.default_mode, 1) )
self.mode = mode_dict.get (mode, self.default_mode )
if 'raw' not in self.mode:
if self.mode == 'hist-match':
self.masked_hist_match = io.input_bool("Masked hist match?", True)
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold", 255, add_info="0..255"), 0, 255)
if self.face_type == FaceType.FULL:
s = """Choose mask mode: \n"""
for key in full_face_mask_mode_dict.keys():
s += f"""({key}) {full_face_mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
else:
s = """Choose mask mode: \n"""
for key in half_face_mask_mode_dict.keys():
s += f"""({key}) {half_face_mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
if 'raw' not in self.mode:
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier", 0, add_info="0..400"), 0, 400)
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power", 0, add_info="0..100"), 0, 100)
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier", 0, add_info="-50..50" ), -50, 50)
if 'raw' not in self.mode:
self.color_transfer_mode = io.input_str ( "Color transfer to predicted face", None, valid_list=list(ctm_str_dict.keys())[1:] )
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
super().ask_settings()
self.super_resolution_power = np.clip ( io.input_int ("Choose super resolution power", 0, add_info="0..100", help_message="Enhance details by applying superresolution network."), 0, 100)
if 'raw' not in self.mode:
self.image_denoise_power = np.clip ( io.input_int ("Choose image degrade by denoise power", 0, add_info="0..500"), 0, 500)
self.bicubic_degrade_power = np.clip ( io.input_int ("Choose image degrade by bicubic rescale power", 0, add_info="0..100"), 0, 100)
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image", 0, add_info="0..100"), 0, 100)
io.log_info ("")
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigMasked):
return super().__eq__(other) and \
self.mode == other.mode and \
self.masked_hist_match == other.masked_hist_match and \
self.hist_match_threshold == other.hist_match_threshold and \
self.mask_mode == other.mask_mode and \
self.erode_mask_modifier == other.erode_mask_modifier and \
self.blur_mask_modifier == other.blur_mask_modifier and \
self.motion_blur_power == other.motion_blur_power and \
self.output_face_scale == other.output_face_scale and \
self.color_transfer_mode == other.color_transfer_mode and \
self.super_resolution_power == other.super_resolution_power and \
self.image_denoise_power == other.image_denoise_power and \
self.bicubic_degrade_power == other.bicubic_degrade_power and \
self.color_degrade_power == other.color_degrade_power
return False
def to_string(self, filename):
r = (
f"""MergerConfig {filename}:\n"""
f"""Mode: {self.mode}\n"""
)
if self.mode == 'hist-match':
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
if self.face_type == FaceType.FULL:
r += f"""mask_mode: { full_face_mask_mode_dict[self.mask_mode] }\n"""
else:
r += f"""mask_mode: { half_face_mask_mode_dict[self.mask_mode] }\n"""
if 'raw' not in self.mode:
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
f"""motion_blur_power: {self.motion_blur_power}\n""")
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
r += f"""color_transfer_mode: {ctm_dict[self.color_transfer_mode]}\n"""
r += super().to_string(filename)
r += f"""super_resolution_power: {self.super_resolution_power}\n"""
if 'raw' not in self.mode:
r += (f"""image_denoise_power: {self.image_denoise_power}\n"""
f"""bicubic_degrade_power: {self.bicubic_degrade_power}\n"""
f"""color_degrade_power: {self.color_degrade_power}\n""")
r += "================"
return r
class MergerConfigFaceAvatar(MergerConfig):
def __init__(self, temporal_face_count=0,
add_source_image=False):
super().__init__(type=MergerConfig.TYPE_FACE_AVATAR)
self.temporal_face_count = temporal_face_count
#changeable params
self.add_source_image = add_source_image
def copy(self):
return copy.copy(self)
#override
def ask_settings(self):
self.add_source_image = io.input_bool("Add source image?", False, help_message="Add source image for comparison.")
super().ask_settings()
def toggle_add_source_image(self):
self.add_source_image = not self.add_source_image
#override
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigFaceAvatar):
return super().__eq__(other) and \
self.add_source_image == other.add_source_image
return False
#override
def to_string(self, filename):
return (f"MergerConfig {filename}:\n"
f"add_source_image : {self.add_source_image}\n") + \
super().to_string(filename) + "================"