DeepFaceLab/samplelib/SampleGeneratorFace.py

153 lines
6.6 KiB
Python

import traceback
import numpy as np
import cv2
import multiprocessing
from utils import iter_utils
from facelib import LandmarksProcessor
from samplelib import SampleType, SampleProcessor, SampleLoader, SampleGeneratorBase
'''
arg
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
...
]
'''
class SampleGeneratorFace(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, generators_count=2, generators_random_seed=None, **kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.add_sample_idx = add_sample_idx
# self.add_pitch_yaw_roll = add_pitch_yaw_roll
if sort_by_yaw_target_samples_path is not None:
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
elif sort_by_yaw:
self.sample_type = SampleType.FACE_YAW_SORTED
else:
self.sample_type = SampleType.FACE
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
if generators_random_seed is not None and len(generators_random_seed) != generators_count:
raise ValueError("len(generators_random_seed) != generators_count")
self.generators_random_seed = generators_random_seed
if self.debug:
self.generators_count = 1
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
else:
self.generators_count = min ( generators_count, len(self.samples) )
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
self.generators_sq = [ multiprocessing.Queue() for _ in range(self.generators_count) ]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
#forces to repeat these sample idxs as fast as possible
#currently unused
def repeat_sample_idxs(self, idxs): # [ idx, ... ]
#send idxs list to all sub generators.
for gen_sq in self.generators_sq:
gen_sq.put (idxs)
def batch_func(self, generator_id):
gen_sq = self.generators_sq[generator_id]
if self.generators_random_seed is not None:
np.random.seed ( self.generators_random_seed[generator_id] )
samples = self.samples
samples_len = len(samples)
samples_idxs = [ *range(samples_len) ] [generator_id::self.generators_count]
repeat_samples_idxs = []
if len(samples_idxs) == 0:
raise ValueError('No training data provided.')
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
if all ( [ samples[idx] == None for idx in samples_idxs] ):
raise ValueError('Not enough training data. Gather more faces!')
if self.sample_type == SampleType.FACE:
shuffle_idxs = []
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
shuffle_idxs = []
shuffle_idxs_2D = [[]]*samples_len
while True:
while not gen_sq.empty():
idxs = gen_sq.get()
for idx in idxs:
if idx in samples_idxs:
repeat_samples_idxs.append(idx)
batches = None
for n_batch in range(self.batch_size):
while True:
sample = None
if len(repeat_samples_idxs) > 0:
idx = repeat_samples_idxs.pop()
if self.sample_type == SampleType.FACE:
sample = samples[idx]
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
sample = samples[(idx >> 16) & 0xFFFF][idx & 0xFFFF]
else:
if self.sample_type == SampleType.FACE:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop()
sample = samples[ idx ]
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop()
if samples[idx] != None:
if len(shuffle_idxs_2D[idx]) == 0:
a = shuffle_idxs_2D[idx] = [ *range(len(samples[idx])) ]
np.random.shuffle (a)
idx2 = shuffle_idxs_2D[idx].pop()
sample = samples[idx][idx2]
idx = (idx << 16) | (idx2 & 0xFFFF)
if sample is not None:
try:
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if type(x) != tuple and type(x) != list:
raise Exception('SampleProcessor.process returns NOT tuple/list')
if batches is None:
batches = [ [] for _ in range(len(x)) ]
if self.add_sample_idx:
batches += [ [] ]
i_sample_idx = len(batches)-1
for i in range(len(x)):
batches[i].append ( x[i] )
if self.add_sample_idx:
batches[i_sample_idx].append (idx)
break
yield [ np.array(batch) for batch in batches]