mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
152 lines
No EOL
7 KiB
Python
152 lines
No EOL
7 KiB
Python
from enum import IntEnum
|
|
import numpy as np
|
|
import cv2
|
|
from utils import image_utils
|
|
from facelib import LandmarksProcessor
|
|
from facelib import FaceType
|
|
|
|
|
|
class SampleProcessor(object):
|
|
class TypeFlags(IntEnum):
|
|
SOURCE = 0x00000001,
|
|
WARPED = 0x00000002,
|
|
WARPED_TRANSFORMED = 0x00000004,
|
|
TRANSFORMED = 0x00000008,
|
|
|
|
FACE_ALIGN_HALF = 0x00000010,
|
|
FACE_ALIGN_FULL = 0x00000020,
|
|
FACE_ALIGN_HEAD = 0x00000040,
|
|
FACE_ALIGN_AVATAR = 0x00000080,
|
|
FACE_MASK_FULL = 0x00000100,
|
|
FACE_MASK_EYES = 0x00000200,
|
|
|
|
MODE_BGR = 0x01000000, #BGR
|
|
MODE_G = 0x02000000, #Grayscale
|
|
MODE_GGG = 0x04000000, #3xGrayscale
|
|
MODE_M = 0x08000000, #mask only
|
|
MODE_BGR_SHUFFLE = 0x10000000, #BGR shuffle
|
|
|
|
class Options(object):
|
|
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05]):
|
|
self.random_flip = random_flip
|
|
self.normalize_tanh = normalize_tanh
|
|
self.rotation_range = rotation_range
|
|
self.scale_range = scale_range
|
|
self.tx_range = tx_range
|
|
self.ty_range = ty_range
|
|
|
|
@staticmethod
|
|
def process (sample, sample_process_options, output_sample_types, debug):
|
|
source = sample.load_bgr()
|
|
h,w,c = source.shape
|
|
|
|
is_face_sample = sample.landmarks is not None
|
|
|
|
if debug and is_face_sample:
|
|
LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0))
|
|
|
|
params = image_utils.gen_warp_params(source, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
|
|
|
images = [[None]*3 for _ in range(4)]
|
|
|
|
sample_rnd_seed = np.random.randint(0x80000000)
|
|
|
|
outputs = []
|
|
for sample_type in output_sample_types:
|
|
f = sample_type[0]
|
|
size = sample_type[1]
|
|
random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
|
|
|
|
if f & SampleProcessor.TypeFlags.SOURCE != 0:
|
|
img_type = 0
|
|
elif f & SampleProcessor.TypeFlags.WARPED != 0:
|
|
img_type = 1
|
|
elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
|
|
img_type = 2
|
|
elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
|
|
img_type = 3
|
|
else:
|
|
raise ValueError ('expected SampleTypeFlags type')
|
|
|
|
face_mask_type = 0
|
|
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
|
|
face_mask_type = 1
|
|
elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
|
|
face_mask_type = 2
|
|
|
|
target_face_type = -1
|
|
if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
|
|
target_face_type = FaceType.HALF
|
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
|
|
target_face_type = FaceType.FULL
|
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
|
|
target_face_type = FaceType.HEAD
|
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
|
|
target_face_type = FaceType.AVATAR
|
|
|
|
if images[img_type][face_mask_type] is None:
|
|
img = source
|
|
if is_face_sample:
|
|
if face_mask_type == 1:
|
|
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 )
|
|
elif face_mask_type == 2:
|
|
mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks)
|
|
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
|
mask[mask > 0.0] = 1.0
|
|
img = np.concatenate( (img, mask ), -1 )
|
|
|
|
images[img_type][face_mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0)
|
|
|
|
img = images[img_type][face_mask_type]
|
|
|
|
if is_face_sample and target_face_type != -1:
|
|
if target_face_type > sample.face_type:
|
|
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
|
|
|
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 )
|
|
else:
|
|
img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 )
|
|
|
|
if random_sub_size != 0:
|
|
sub_size = size - random_sub_size
|
|
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
|
|
start_x = rnd_state.randint(sub_size+1)
|
|
start_y = rnd_state.randint(sub_size+1)
|
|
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
|
|
|
img_bgr = img[...,0:3]
|
|
img_mask = img[...,3:4]
|
|
|
|
if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
|
|
img = img
|
|
elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
|
|
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
|
|
img = np.concatenate ( (img_bgr,img_mask) , -1 )
|
|
elif f & SampleProcessor.TypeFlags.MODE_G != 0:
|
|
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
|
elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
|
|
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
|
elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
|
|
if face_mask_type== 0:
|
|
raise ValueError ('no face_mask_type defined')
|
|
img = img_mask
|
|
else:
|
|
raise ValueError ('expected SampleTypeFlags mode')
|
|
|
|
if not debug and sample_process_options.normalize_tanh:
|
|
img = img * 2.0 - 1.0
|
|
|
|
outputs.append ( img )
|
|
|
|
if debug:
|
|
result = []
|
|
|
|
for output in outputs:
|
|
if output.shape[2] < 4:
|
|
result += [output,]
|
|
elif output.shape[2] == 4:
|
|
result += [output[...,0:3]*output[...,3:4],]
|
|
|
|
return result
|
|
else:
|
|
return outputs |