DeepFaceLab/samples/SampleProcessor.py
2018-12-24 18:41:36 +04:00

152 lines
No EOL
7 KiB
Python

from enum import IntEnum
import numpy as np
import cv2
from utils import image_utils
from facelib import LandmarksProcessor
from facelib import FaceType
class SampleProcessor(object):
class TypeFlags(IntEnum):
SOURCE = 0x00000001,
WARPED = 0x00000002,
WARPED_TRANSFORMED = 0x00000004,
TRANSFORMED = 0x00000008,
FACE_ALIGN_HALF = 0x00000010,
FACE_ALIGN_FULL = 0x00000020,
FACE_ALIGN_HEAD = 0x00000040,
FACE_ALIGN_AVATAR = 0x00000080,
FACE_MASK_FULL = 0x00000100,
FACE_MASK_EYES = 0x00000200,
MODE_BGR = 0x01000000, #BGR
MODE_G = 0x02000000, #Grayscale
MODE_GGG = 0x04000000, #3xGrayscale
MODE_M = 0x08000000, #mask only
MODE_BGR_SHUFFLE = 0x10000000, #BGR shuffle
class Options(object):
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05]):
self.random_flip = random_flip
self.normalize_tanh = normalize_tanh
self.rotation_range = rotation_range
self.scale_range = scale_range
self.tx_range = tx_range
self.ty_range = ty_range
@staticmethod
def process (sample, sample_process_options, output_sample_types, debug):
source = sample.load_bgr()
h,w,c = source.shape
is_face_sample = sample.landmarks is not None
if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0))
params = image_utils.gen_warp_params(source, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
images = [[None]*3 for _ in range(4)]
sample_rnd_seed = np.random.randint(0x80000000)
outputs = []
for sample_type in output_sample_types:
f = sample_type[0]
size = sample_type[1]
random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
if f & SampleProcessor.TypeFlags.SOURCE != 0:
img_type = 0
elif f & SampleProcessor.TypeFlags.WARPED != 0:
img_type = 1
elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
img_type = 2
elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
img_type = 3
else:
raise ValueError ('expected SampleTypeFlags type')
face_mask_type = 0
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
face_mask_type = 1
elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
face_mask_type = 2
target_face_type = -1
if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
target_face_type = FaceType.HALF
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
target_face_type = FaceType.FULL
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
target_face_type = FaceType.HEAD
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
target_face_type = FaceType.AVATAR
if images[img_type][face_mask_type] is None:
img = source
if is_face_sample:
if face_mask_type == 1:
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 )
elif face_mask_type == 2:
mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks)
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
mask[mask > 0.0] = 1.0
img = np.concatenate( (img, mask ), -1 )
images[img_type][face_mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0)
img = images[img_type][face_mask_type]
if is_face_sample and target_face_type != -1:
if target_face_type > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 )
else:
img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 )
if random_sub_size != 0:
sub_size = size - random_sub_size
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
start_x = rnd_state.randint(sub_size+1)
start_y = rnd_state.randint(sub_size+1)
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
img_bgr = img[...,0:3]
img_mask = img[...,3:4]
if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
img = img
elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
img = np.concatenate ( (img_bgr,img_mask) , -1 )
elif f & SampleProcessor.TypeFlags.MODE_G != 0:
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
if face_mask_type== 0:
raise ValueError ('no face_mask_type defined')
img = img_mask
else:
raise ValueError ('expected SampleTypeFlags mode')
if not debug and sample_process_options.normalize_tanh:
img = img * 2.0 - 1.0
outputs.append ( img )
if debug:
result = []
for output in outputs:
if output.shape[2] < 4:
result += [output,]
elif output.shape[2] == 4:
result += [output[...,0:3]*output[...,3:4],]
return result
else:
return outputs