DeepFaceLab/samplelib/SampleGeneratorFace.py
Colombo dc11ec32be SAE : WARNING, RETRAIN IS REQUIRED !
fixed model sizes from previous update.
avoided bug in ML framework(keras) that forces to train the model on random noise.

Converter: added blur on the same keys as sharpness

Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT
Model produces near zero morphing and high detail face.
Model has higher failure rate than other models.
Keep src and dst faceset in same lighting conditions.
2019-09-19 11:13:56 +04:00

171 lines
No EOL
7.2 KiB
Python

import multiprocessing
import traceback
import cv2
import numpy as np
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
SampleType)
from utils import iter_utils
'''
arg
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
class SampleGeneratorFace(SampleGeneratorBase):
def __init__ (self, samples_path, debug=False, batch_size=1,
sort_by_yaw=False,
sort_by_yaw_target_samples_path=None,
random_ct_samples_path=None,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
person_id_mode=False,
add_sample_idx=False,
generators_count=2,
generators_random_seed=None,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.add_sample_idx = add_sample_idx
self.person_id_mode = person_id_mode
if sort_by_yaw_target_samples_path is not None:
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
elif sort_by_yaw:
self.sample_type = SampleType.FACE_YAW_SORTED
else:
self.sample_type = SampleType.FACE
if generators_random_seed is not None and len(generators_random_seed) != generators_count:
raise ValueError("len(generators_random_seed) != generators_count")
self.generators_random_seed = generators_random_seed
samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path, person_id_mode=person_id_mode)
self.total_samples_count = len(samples)
ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path) if random_ct_samples_path is not None else None
self.random_ct_sample_chance = 100
if self.debug:
self.generators_count = 1
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples, ct_samples) )]
else:
self.generators_count = min ( generators_count, len(samples) )
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count], ct_samples ) ) for i in range(self.generators_count) ]
self.generator_counter = -1
#overridable
def get_total_sample_count(self):
return self.total_samples_count
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
generator_id, samples, ct_samples = param
if self.generators_random_seed is not None:
np.random.seed ( self.generators_random_seed[generator_id] )
samples_len = len(samples)
samples_idxs = [*range(samples_len)]
ct_samples_len = len(ct_samples) if ct_samples is not None else 0
if len(samples_idxs) == 0:
raise ValueError('No training data provided.')
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
if all ( [ samples[idx] == None for idx in samples_idxs] ):
raise ValueError('Not enough training data. Gather more faces!')
if self.sample_type == SampleType.FACE:
shuffle_idxs = []
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
shuffle_idxs = []
shuffle_idxs_2D = [[]]*samples_len
while True:
batches = None
for n_batch in range(self.batch_size):
while True:
sample = None
if self.sample_type == SampleType.FACE:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop()
sample = samples[ idx ]
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop()
if samples[idx] != None:
if len(shuffle_idxs_2D[idx]) == 0:
a = shuffle_idxs_2D[idx] = [ *range(len(samples[idx])) ]
np.random.shuffle (a)
idx2 = shuffle_idxs_2D[idx].pop()
sample = samples[idx][idx2]
idx = (idx << 16) | (idx2 & 0xFFFF)
if sample is not None:
try:
ct_sample=None
if ct_samples is not None:
if np.random.randint(100) < self.random_ct_sample_chance:
ct_sample=ct_samples[np.random.randint(ct_samples_len)]
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if type(x) != tuple and type(x) != list:
raise Exception('SampleProcessor.process returns NOT tuple/list')
if batches is None:
batches = [ [] for _ in range(len(x)) ]
if self.add_sample_idx:
batches += [ [] ]
i_sample_idx = len(batches)-1
if self.person_id_mode:
batches += [ [] ]
i_person_id = len(batches)-1
for i in range(len(x)):
batches[i].append ( x[i] )
if self.add_sample_idx:
batches[i_sample_idx].append (idx)
if self.person_id_mode:
batches[i_person_id].append ( np.array([sample.person_id]) )
break
yield [ np.array(batch) for batch in batches]
@staticmethod
def get_person_id_max_count(samples_path):
return SampleLoader.get_person_id_max_count(samples_path)