mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-12 08:07:03 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
326 lines
12 KiB
Python
326 lines
12 KiB
Python
import pickle
|
|
import struct
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core.interact import interact as io
|
|
from core.structex import *
|
|
from facelib import FaceType
|
|
|
|
|
|
class DFLJPG(object):
|
|
def __init__(self):
|
|
self.data = b""
|
|
self.length = 0
|
|
self.chunks = []
|
|
self.dfl_dict = None
|
|
self.shape = (0,0,0)
|
|
|
|
@staticmethod
|
|
def load_raw(filename, loader_func=None):
|
|
try:
|
|
if loader_func is not None:
|
|
data = loader_func(filename)
|
|
else:
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
except:
|
|
raise FileNotFoundError(filename)
|
|
|
|
try:
|
|
inst = DFLJPG()
|
|
inst.data = data
|
|
inst.length = len(data)
|
|
inst_length = inst.length
|
|
chunks = []
|
|
data_counter = 0
|
|
while data_counter < inst_length:
|
|
chunk_m_l, chunk_m_h = struct.unpack ("BB", data[data_counter:data_counter+2])
|
|
data_counter += 2
|
|
|
|
if chunk_m_l != 0xFF:
|
|
raise ValueError("No Valid JPG info")
|
|
|
|
chunk_name = None
|
|
chunk_size = None
|
|
chunk_data = None
|
|
chunk_ex_data = None
|
|
is_unk_chunk = False
|
|
|
|
if chunk_m_h & 0xF0 == 0xD0:
|
|
n = chunk_m_h & 0x0F
|
|
|
|
if n >= 0 and n <= 7:
|
|
chunk_name = "RST%d" % (n)
|
|
chunk_size = 0
|
|
elif n == 0x8:
|
|
chunk_name = "SOI"
|
|
chunk_size = 0
|
|
if len(chunks) != 0:
|
|
raise Exception("")
|
|
elif n == 0x9:
|
|
chunk_name = "EOI"
|
|
chunk_size = 0
|
|
elif n == 0xA:
|
|
chunk_name = "SOS"
|
|
elif n == 0xB:
|
|
chunk_name = "DQT"
|
|
elif n == 0xD:
|
|
chunk_name = "DRI"
|
|
chunk_size = 2
|
|
else:
|
|
is_unk_chunk = True
|
|
elif chunk_m_h & 0xF0 == 0xC0:
|
|
n = chunk_m_h & 0x0F
|
|
if n == 0:
|
|
chunk_name = "SOF0"
|
|
elif n == 2:
|
|
chunk_name = "SOF2"
|
|
elif n == 4:
|
|
chunk_name = "DHT"
|
|
else:
|
|
is_unk_chunk = True
|
|
elif chunk_m_h & 0xF0 == 0xE0:
|
|
n = chunk_m_h & 0x0F
|
|
chunk_name = "APP%d" % (n)
|
|
else:
|
|
is_unk_chunk = True
|
|
|
|
if is_unk_chunk:
|
|
raise ValueError("Unknown chunk %X" % (chunk_m_h) )
|
|
|
|
if chunk_size == None: #variable size
|
|
chunk_size, = struct.unpack (">H", data[data_counter:data_counter+2])
|
|
chunk_size -= 2
|
|
data_counter += 2
|
|
|
|
if chunk_size > 0:
|
|
chunk_data = data[data_counter:data_counter+chunk_size]
|
|
data_counter += chunk_size
|
|
|
|
if chunk_name == "SOS":
|
|
c = data_counter
|
|
while c < inst_length and (data[c] != 0xFF or data[c+1] != 0xD9):
|
|
c += 1
|
|
|
|
chunk_ex_data = data[data_counter:c]
|
|
data_counter = c
|
|
|
|
chunks.append ({'name' : chunk_name,
|
|
'm_h' : chunk_m_h,
|
|
'data' : chunk_data,
|
|
'ex_data' : chunk_ex_data,
|
|
})
|
|
inst.chunks = chunks
|
|
|
|
return inst
|
|
except Exception as e:
|
|
raise Exception ("Corrupted JPG file: %s" % (str(e)))
|
|
|
|
@staticmethod
|
|
def load(filename, loader_func=None):
|
|
try:
|
|
inst = DFLJPG.load_raw (filename, loader_func=loader_func)
|
|
inst.dfl_dict = None
|
|
|
|
for chunk in inst.chunks:
|
|
if chunk['name'] == 'APP0':
|
|
d, c = chunk['data'], 0
|
|
c, id, _ = struct_unpack (d, c, "=4sB")
|
|
|
|
if id == b"JFIF":
|
|
c, ver_major, ver_minor, units, Xdensity, Ydensity, Xthumbnail, Ythumbnail = struct_unpack (d, c, "=BBBHHBB")
|
|
#if units == 0:
|
|
# inst.shape = (Ydensity, Xdensity, 3)
|
|
else:
|
|
raise Exception("Unknown jpeg ID: %s" % (id) )
|
|
elif chunk['name'] == 'SOF0' or chunk['name'] == 'SOF2':
|
|
d, c = chunk['data'], 0
|
|
c, precision, height, width = struct_unpack (d, c, ">BHH")
|
|
inst.shape = (height, width, 3)
|
|
|
|
elif chunk['name'] == 'APP15':
|
|
if type(chunk['data']) == bytes:
|
|
inst.dfl_dict = pickle.loads(chunk['data'])
|
|
|
|
if (inst.dfl_dict is not None):
|
|
if 'face_type' not in inst.dfl_dict:
|
|
inst.dfl_dict['face_type'] = FaceType.toString (FaceType.FULL)
|
|
|
|
if 'fanseg_mask' in inst.dfl_dict:
|
|
fanseg_mask = inst.dfl_dict['fanseg_mask']
|
|
if fanseg_mask is not None:
|
|
numpyarray = np.asarray( inst.dfl_dict['fanseg_mask'], dtype=np.uint8)
|
|
inst.dfl_dict['fanseg_mask'] = cv2.imdecode(numpyarray, cv2.IMREAD_UNCHANGED)
|
|
|
|
if inst.dfl_dict == None:
|
|
return None
|
|
|
|
return inst
|
|
except Exception as e:
|
|
print (e)
|
|
return None
|
|
|
|
@staticmethod
|
|
def embed_dfldict(filename, dfl_dict):
|
|
inst = DFLJPG.load_raw (filename)
|
|
inst.setDFLDictData (dfl_dict)
|
|
|
|
try:
|
|
with open(filename, "wb") as f:
|
|
f.write ( inst.dump() )
|
|
except:
|
|
raise Exception( 'cannot save %s' % (filename) )
|
|
|
|
@staticmethod
|
|
def embed_data(filename, face_type=None,
|
|
landmarks=None,
|
|
ie_polys=None,
|
|
source_filename=None,
|
|
source_rect=None,
|
|
source_landmarks=None,
|
|
image_to_face_mat=None,
|
|
fanseg_mask=None,
|
|
eyebrows_expand_mod=None,
|
|
relighted=None,
|
|
**kwargs
|
|
):
|
|
|
|
if fanseg_mask is not None:
|
|
fanseg_mask = np.clip ( (fanseg_mask*255).astype(np.uint8), 0, 255 )
|
|
|
|
ret, buf = cv2.imencode( '.jpg', fanseg_mask, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
|
|
|
|
if ret and len(buf) < 60000:
|
|
fanseg_mask = buf
|
|
else:
|
|
io.log_err("Unable to encode fanseg_mask for %s" % (filename) )
|
|
fanseg_mask = None
|
|
|
|
if ie_polys is not None:
|
|
if not isinstance(ie_polys, list):
|
|
ie_polys = ie_polys.dump()
|
|
|
|
DFLJPG.embed_dfldict (filename, {'face_type': face_type,
|
|
'landmarks': landmarks,
|
|
'ie_polys' : ie_polys,
|
|
'source_filename': source_filename,
|
|
'source_rect': source_rect,
|
|
'source_landmarks': source_landmarks,
|
|
'image_to_face_mat': image_to_face_mat,
|
|
'fanseg_mask' : fanseg_mask,
|
|
'eyebrows_expand_mod' : eyebrows_expand_mod,
|
|
'relighted' : relighted
|
|
})
|
|
|
|
def embed_and_set(self, filename, face_type=None,
|
|
landmarks=None,
|
|
ie_polys=None,
|
|
source_filename=None,
|
|
source_rect=None,
|
|
source_landmarks=None,
|
|
image_to_face_mat=None,
|
|
fanseg_mask=None,
|
|
eyebrows_expand_mod=None,
|
|
relighted=None,
|
|
**kwargs
|
|
):
|
|
if face_type is None: face_type = self.get_face_type()
|
|
if landmarks is None: landmarks = self.get_landmarks()
|
|
if ie_polys is None: ie_polys = self.get_ie_polys()
|
|
if source_filename is None: source_filename = self.get_source_filename()
|
|
if source_rect is None: source_rect = self.get_source_rect()
|
|
if source_landmarks is None: source_landmarks = self.get_source_landmarks()
|
|
if image_to_face_mat is None: image_to_face_mat = self.get_image_to_face_mat()
|
|
if fanseg_mask is None: fanseg_mask = self.get_fanseg_mask()
|
|
if eyebrows_expand_mod is None: eyebrows_expand_mod = self.get_eyebrows_expand_mod()
|
|
if relighted is None: relighted = self.get_relighted()
|
|
DFLJPG.embed_data (filename, face_type=face_type,
|
|
landmarks=landmarks,
|
|
ie_polys=ie_polys,
|
|
source_filename=source_filename,
|
|
source_rect=source_rect,
|
|
source_landmarks=source_landmarks,
|
|
image_to_face_mat=image_to_face_mat,
|
|
fanseg_mask=fanseg_mask,
|
|
eyebrows_expand_mod=eyebrows_expand_mod,
|
|
relighted=relighted)
|
|
|
|
def remove_ie_polys(self):
|
|
self.dfl_dict['ie_polys'] = None
|
|
|
|
def remove_fanseg_mask(self):
|
|
self.dfl_dict['fanseg_mask'] = None
|
|
|
|
def remove_source_filename(self):
|
|
self.dfl_dict['source_filename'] = None
|
|
|
|
def dump(self):
|
|
data = b""
|
|
|
|
for chunk in self.chunks:
|
|
data += struct.pack ("BB", 0xFF, chunk['m_h'] )
|
|
chunk_data = chunk['data']
|
|
if chunk_data is not None:
|
|
data += struct.pack (">H", len(chunk_data)+2 )
|
|
data += chunk_data
|
|
|
|
chunk_ex_data = chunk['ex_data']
|
|
if chunk_ex_data is not None:
|
|
data += chunk_ex_data
|
|
|
|
return data
|
|
|
|
def get_shape(self):
|
|
return self.shape
|
|
|
|
def get_height(self):
|
|
for chunk in self.chunks:
|
|
if type(chunk) == IHDR:
|
|
return chunk.height
|
|
return 0
|
|
|
|
def getDFLDictData(self):
|
|
return self.dfl_dict
|
|
|
|
def setDFLDictData (self, dict_data=None):
|
|
self.dfl_dict = dict_data
|
|
|
|
for chunk in self.chunks:
|
|
if chunk['name'] == 'APP15':
|
|
self.chunks.remove(chunk)
|
|
break
|
|
|
|
last_app_chunk = 0
|
|
for i, chunk in enumerate (self.chunks):
|
|
if chunk['m_h'] & 0xF0 == 0xE0:
|
|
last_app_chunk = i
|
|
|
|
dflchunk = {'name' : 'APP15',
|
|
'm_h' : 0xEF,
|
|
'data' : pickle.dumps(dict_data),
|
|
'ex_data' : None,
|
|
}
|
|
self.chunks.insert (last_app_chunk+1, dflchunk)
|
|
|
|
def get_face_type(self): return self.dfl_dict['face_type']
|
|
def get_landmarks(self): return np.array ( self.dfl_dict['landmarks'] )
|
|
def get_ie_polys(self): return self.dfl_dict.get('ie_polys',None)
|
|
def get_source_filename(self): return self.dfl_dict['source_filename']
|
|
def get_source_rect(self): return self.dfl_dict['source_rect']
|
|
def get_source_landmarks(self): return np.array ( self.dfl_dict['source_landmarks'] )
|
|
def get_image_to_face_mat(self):
|
|
mat = self.dfl_dict.get ('image_to_face_mat', None)
|
|
if mat is not None:
|
|
return np.array (mat)
|
|
return None
|
|
def get_fanseg_mask(self):
|
|
fanseg_mask = self.dfl_dict.get ('fanseg_mask', None)
|
|
if fanseg_mask is not None:
|
|
return np.clip ( np.array (fanseg_mask) / 255.0, 0.0, 1.0 )[...,np.newaxis]
|
|
return None
|
|
def get_eyebrows_expand_mod(self):
|
|
return self.dfl_dict.get ('eyebrows_expand_mod', None)
|
|
def get_relighted(self):
|
|
return self.dfl_dict.get ('relighted', False)
|