mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
558 lines
No EOL
25 KiB
Python
558 lines
No EOL
25 KiB
Python
import traceback
|
|
import os
|
|
import sys
|
|
import time
|
|
import multiprocessing
|
|
import shutil
|
|
from pathlib import Path
|
|
import numpy as np
|
|
import cv2
|
|
from utils import Path_utils
|
|
from utils.DFLJPG import DFLJPG
|
|
from utils.cv2_utils import *
|
|
from utils import image_utils
|
|
import facelib
|
|
from facelib import FaceType
|
|
from facelib import LandmarksProcessor
|
|
from nnlib import nnlib
|
|
|
|
from utils.SubprocessorBase import SubprocessorBase
|
|
class ExtractSubprocessor(SubprocessorBase):
|
|
|
|
#override
|
|
def __init__(self, input_data, type, image_size, face_type, debug, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, detector=None, output_path=None ):
|
|
self.input_data = input_data
|
|
self.type = type
|
|
self.image_size = image_size
|
|
self.face_type = face_type
|
|
self.debug = debug
|
|
self.multi_gpu = multi_gpu
|
|
self.cpu_only = cpu_only
|
|
self.detector = detector
|
|
self.output_path = output_path
|
|
self.manual = manual
|
|
self.manual_window_size = manual_window_size
|
|
self.result = []
|
|
|
|
no_response_time_sec = 60 if not self.manual else 999999
|
|
super().__init__('Extractor', no_response_time_sec)
|
|
|
|
#override
|
|
def onHostClientsInitialized(self):
|
|
if self.manual == True:
|
|
self.wnd_name = 'Manual pass'
|
|
cv2.namedWindow(self.wnd_name)
|
|
|
|
self.landmarks = None
|
|
self.param_x = -1
|
|
self.param_y = -1
|
|
self.param_rect_size = -1
|
|
self.param = {'x': 0, 'y': 0, 'rect_size' : 100, 'rect_locked' : False, 'redraw_needed' : False }
|
|
|
|
def onMouse(event, x, y, flags, param):
|
|
if event == cv2.EVENT_MOUSEWHEEL:
|
|
mod = 1 if flags > 0 else -1
|
|
diff = 1 if param['rect_size'] <= 40 else np.clip(param['rect_size'] / 10, 1, 10)
|
|
param['rect_size'] = max (5, param['rect_size'] + diff*mod)
|
|
elif event == cv2.EVENT_LBUTTONDOWN:
|
|
param['rect_locked'] = not param['rect_locked']
|
|
param['redraw_needed'] = True
|
|
elif not param['rect_locked']:
|
|
param['x'] = x
|
|
param['y'] = y
|
|
|
|
cv2.setMouseCallback(self.wnd_name, onMouse, self.param)
|
|
|
|
def get_devices_for_type (self, type, multi_gpu, cpu_only):
|
|
if not cpu_only and (type == 'rects' or type == 'landmarks'):
|
|
if type == 'rects' and self.detector == 'mt' and nnlib.device.backend == "plaidML":
|
|
cpu_only = True
|
|
else:
|
|
if multi_gpu:
|
|
devices = nnlib.device.getValidDevicesWithAtLeastTotalMemoryGB(2)
|
|
if not multi_gpu or len(devices) == 0:
|
|
devices = [nnlib.device.getBestValidDeviceIdx()]
|
|
if len(devices) == 0:
|
|
devices = [0]
|
|
|
|
for idx in devices:
|
|
dev_name = nnlib.device.getDeviceName(idx)
|
|
dev_vram = nnlib.device.getDeviceVRAMTotalGb(idx)
|
|
|
|
if not self.manual and self.type == 'rects' and self.detector == 'mt':
|
|
for i in range ( int (max (1, dev_vram / 2) ) ):
|
|
yield (idx, 'GPU', '%s #%d' % (dev_name,i) , dev_vram)
|
|
else:
|
|
yield (idx, 'GPU', dev_name, dev_vram)
|
|
|
|
if cpu_only and (type == 'rects' or type == 'landmarks'):
|
|
for i in range( min(8, multiprocessing.cpu_count() // 2) ):
|
|
yield (i, 'CPU', 'CPU%d' % (i), 0 )
|
|
|
|
if type == 'final':
|
|
for i in range( min(8, multiprocessing.cpu_count()) ):
|
|
yield (i, 'CPU', 'CPU%d' % (i), 0 )
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
base_dict = {'type' : self.type,
|
|
'image_size': self.image_size,
|
|
'face_type': self.face_type,
|
|
'debug': self.debug,
|
|
'output_dir': str(self.output_path),
|
|
'detector': self.detector}
|
|
|
|
for (device_idx, device_type, device_name, device_total_vram_gb) in self.get_devices_for_type(self.type, self.multi_gpu, self.cpu_only):
|
|
client_dict = base_dict.copy()
|
|
client_dict['device_idx'] = device_idx
|
|
client_dict['device_name'] = device_name
|
|
client_dict['device_type'] = device_type
|
|
yield client_dict['device_name'], {}, client_dict
|
|
|
|
|
|
#override
|
|
def get_no_process_started_message(self):
|
|
if (self.type == 'rects' or self.type == 'landmarks'):
|
|
print ( 'You have no capable GPUs. Try to close programs which can consume VRAM, and run again.')
|
|
elif self.type == 'final':
|
|
print ( 'Unable to start CPU processes.')
|
|
|
|
#override
|
|
def onHostGetProgressBarDesc(self):
|
|
return None
|
|
|
|
#override
|
|
def onHostGetProgressBarLen(self):
|
|
return len (self.input_data)
|
|
|
|
#override
|
|
def onHostGetData(self, host_dict):
|
|
if not self.manual:
|
|
if len (self.input_data) > 0:
|
|
return self.input_data.pop(0)
|
|
else:
|
|
skip_remaining = False
|
|
allow_remark_faces = False
|
|
while len (self.input_data) > 0:
|
|
data = self.input_data[0]
|
|
filename, faces = data
|
|
is_frame_done = False
|
|
go_to_prev_frame = False
|
|
|
|
# Can we mark an image that already has a marked face?
|
|
if allow_remark_faces:
|
|
allow_remark_faces = False
|
|
# If there was already a face then lock the rectangle to it until the mouse is clicked
|
|
if len(faces) > 0:
|
|
self.rect, self.landmarks = faces.pop()
|
|
|
|
self.param['rect_locked'] = True
|
|
faces.clear()
|
|
self.param['rect_size'] = ( self.rect[2] - self.rect[0] ) / 2
|
|
self.param['x'] = ( ( self.rect[0] + self.rect[2] ) / 2 ) * self.view_scale
|
|
self.param['y'] = ( ( self.rect[1] + self.rect[3] ) / 2 ) * self.view_scale
|
|
|
|
|
|
if len(faces) == 0:
|
|
self.original_image = cv2_imread(filename)
|
|
|
|
(h,w,c) = self.original_image.shape
|
|
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / ( h * (16.0/9.0) )
|
|
self.original_image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
|
|
(h,w,c) = self.original_image.shape
|
|
|
|
self.text_lines_img = (image_utils.get_draw_text_lines ( self.original_image, (0,0, self.original_image.shape[1], min(100, self.original_image.shape[0]) ),
|
|
[ 'Match landmarks with face exactly. Click to confirm/unconfirm selection',
|
|
'[Enter] - confirm face landmarks and continue',
|
|
'[Space] - confirm as unmarked frame and continue',
|
|
'[Mouse wheel] - change rect',
|
|
'[,] [.]- prev frame, next frame',
|
|
'[Q] - skip remaining frames'
|
|
], (1, 1, 1) )*255).astype(np.uint8)
|
|
|
|
while True:
|
|
key = cv2.waitKey(1) & 0xFF
|
|
|
|
if key == ord('\r') or key == ord('\n'):
|
|
faces.append ( [(self.rect), self.landmarks] )
|
|
is_frame_done = True
|
|
break
|
|
elif key == ord(' '):
|
|
is_frame_done = True
|
|
break
|
|
elif key == ord('.'):
|
|
allow_remark_faces = True
|
|
# Only save the face if the rect is still locked
|
|
if self.param['rect_locked']:
|
|
faces.append ( [(self.rect), self.landmarks] )
|
|
is_frame_done = True
|
|
break
|
|
elif key == ord(',') and len(self.result) > 0:
|
|
# Only save the face if the rect is still locked
|
|
if self.param['rect_locked']:
|
|
faces.append ( [(self.rect), self.landmarks] )
|
|
go_to_prev_frame = True
|
|
break
|
|
elif key == ord('q'):
|
|
skip_remaining = True
|
|
break
|
|
|
|
new_param_x = np.clip (self.param['x'], 0, w-1) / self.view_scale
|
|
new_param_y = np.clip (self.param['y'], 0, h-1) / self.view_scale
|
|
new_param_rect_size = self.param['rect_size']
|
|
|
|
if self.param_x != new_param_x or \
|
|
self.param_y != new_param_y or \
|
|
self.param_rect_size != new_param_rect_size or \
|
|
self.param['redraw_needed']:
|
|
|
|
self.param_x = new_param_x
|
|
self.param_y = new_param_y
|
|
self.param_rect_size = new_param_rect_size
|
|
|
|
self.rect = ( int(self.param_x-self.param_rect_size),
|
|
int(self.param_y-self.param_rect_size),
|
|
int(self.param_x+self.param_rect_size),
|
|
int(self.param_y+self.param_rect_size) )
|
|
|
|
return [filename, [self.rect]]
|
|
|
|
else:
|
|
is_frame_done = True
|
|
|
|
if is_frame_done:
|
|
self.result.append ( data )
|
|
self.input_data.pop(0)
|
|
self.inc_progress_bar(1)
|
|
self.param['redraw_needed'] = True
|
|
self.param['rect_locked'] = False
|
|
elif go_to_prev_frame:
|
|
self.input_data.insert(0, self.result.pop() )
|
|
self.inc_progress_bar(-1)
|
|
allow_remark_faces = True
|
|
self.param['redraw_needed'] = True
|
|
self.param['rect_locked'] = False
|
|
elif skip_remaining:
|
|
if self.param['rect_locked']:
|
|
faces.append ( [(self.rect), self.landmarks] )
|
|
while len(self.input_data) > 0:
|
|
self.result.append( self.input_data.pop(0) )
|
|
self.inc_progress_bar(1)
|
|
|
|
return None
|
|
|
|
#override
|
|
def onHostDataReturn (self, host_dict, data):
|
|
if not self.manual:
|
|
self.input_data.insert(0, data)
|
|
|
|
#override
|
|
def onClientInitialize(self, client_dict):
|
|
self.safe_print ('Running on %s.' % (client_dict['device_name']) )
|
|
self.type = client_dict['type']
|
|
self.image_size = client_dict['image_size']
|
|
self.face_type = client_dict['face_type']
|
|
self.device_idx = client_dict['device_idx']
|
|
self.cpu_only = client_dict['device_type'] == 'CPU'
|
|
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
|
|
self.debug = client_dict['debug']
|
|
self.detector = client_dict['detector']
|
|
|
|
self.e = None
|
|
device_config = nnlib.DeviceConfig ( cpu_only=self.cpu_only, force_gpu_idx=self.device_idx, allow_growth=True)
|
|
if self.type == 'rects':
|
|
if self.detector is not None:
|
|
if self.detector == 'mt':
|
|
nnlib.import_all (device_config)
|
|
self.e = facelib.MTCExtractor()
|
|
elif self.detector == 'dlib':
|
|
nnlib.import_dlib (device_config)
|
|
self.e = facelib.DLIBExtractor(nnlib.dlib)
|
|
self.e.__enter__()
|
|
|
|
elif self.type == 'landmarks':
|
|
nnlib.import_all (device_config)
|
|
self.e = facelib.LandmarksExtractor(nnlib.keras)
|
|
self.e.__enter__()
|
|
|
|
elif self.type == 'final':
|
|
pass
|
|
|
|
return None
|
|
|
|
#override
|
|
def onClientFinalize(self):
|
|
if self.e is not None:
|
|
self.e.__exit__()
|
|
|
|
#override
|
|
def onClientProcessData(self, data):
|
|
filename_path = Path( data[0] )
|
|
|
|
image = cv2_imread( str(filename_path) )
|
|
|
|
if image is None:
|
|
print ( 'Failed to extract %s, reason: cv2_imread() fail.' % ( str(filename_path) ) )
|
|
else:
|
|
if self.type == 'rects':
|
|
rects = self.e.extract_from_bgr (image)
|
|
return [str(filename_path), rects]
|
|
|
|
elif self.type == 'landmarks':
|
|
rects = data[1]
|
|
landmarks = self.e.extract_from_bgr (image, rects)
|
|
return [str(filename_path), landmarks]
|
|
|
|
elif self.type == 'final':
|
|
src_dflimg = None
|
|
(h,w,c) = image.shape
|
|
if h == w:
|
|
#extracting from already extracted jpg image?
|
|
if filename_path.suffix == '.jpg':
|
|
src_dflimg = DFLJPG.load ( str(filename_path) )
|
|
|
|
result = []
|
|
faces = data[1]
|
|
|
|
if self.debug:
|
|
debug_output_file = '{}{}'.format( str(Path(str(self.output_path) + '_debug') / filename_path.stem), '.jpg')
|
|
debug_image = image.copy()
|
|
|
|
for (face_idx, face) in enumerate(faces):
|
|
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.jpg')
|
|
|
|
rect = face[0]
|
|
image_landmarks = np.array(face[1])
|
|
|
|
if self.debug:
|
|
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type)
|
|
|
|
if self.face_type == FaceType.MARK_ONLY:
|
|
face_image = image
|
|
face_image_landmarks = image_landmarks
|
|
else:
|
|
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
|
|
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
|
|
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
|
|
|
|
if src_dflimg is not None:
|
|
#if extracting from dflimg just copy it in order not to lose quality
|
|
shutil.copy ( str(filename_path), str(output_file) )
|
|
else:
|
|
cv2_imwrite(output_file, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
|
|
|
|
DFLJPG.embed_data(output_file, face_type = FaceType.toString(self.face_type),
|
|
landmarks = face_image_landmarks.tolist(),
|
|
source_filename = filename_path.name,
|
|
source_rect= rect,
|
|
source_landmarks = image_landmarks.tolist()
|
|
)
|
|
|
|
result.append (output_file)
|
|
|
|
if self.debug:
|
|
cv2_imwrite(debug_output_file, debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
|
|
|
|
return result
|
|
return None
|
|
|
|
#overridable
|
|
def onClientGetDataName (self, data):
|
|
#return string identificator of your data
|
|
return data[0]
|
|
|
|
#override
|
|
def onHostResult (self, host_dict, data, result):
|
|
if self.manual == True:
|
|
self.landmarks = result[1][0][1]
|
|
|
|
(h,w,c) = self.original_image.shape
|
|
image = cv2.addWeighted (self.original_image,1.0,self.text_lines_img,1.0,0)
|
|
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
|
|
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
|
|
|
|
if self.param_rect_size <= 40:
|
|
scaled_rect_size = h // 3 if w > h else w // 3
|
|
|
|
p1 = (self.param_x - self.param_rect_size, self.param_y - self.param_rect_size)
|
|
p2 = (self.param_x + self.param_rect_size, self.param_y - self.param_rect_size)
|
|
p3 = (self.param_x - self.param_rect_size, self.param_y + self.param_rect_size)
|
|
|
|
wh = h if h < w else w
|
|
np1 = (w / 2 - wh / 4, h / 2 - wh / 4)
|
|
np2 = (w / 2 + wh / 4, h / 2 - wh / 4)
|
|
np3 = (w / 2 - wh / 4, h / 2 + wh / 4)
|
|
|
|
mat = cv2.getAffineTransform( np.float32([p1,p2,p3])*self.view_scale, np.float32([np1,np2,np3]) )
|
|
image = cv2.warpAffine(image, mat,(w,h) )
|
|
view_landmarks = LandmarksProcessor.transform_points (view_landmarks, mat)
|
|
|
|
LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.image_size, self.face_type)
|
|
|
|
if self.param['rect_locked']:
|
|
LandmarksProcessor.draw_landmarks(image, view_landmarks, (255,255,0) )
|
|
self.param['redraw_needed'] = False
|
|
|
|
cv2.imshow (self.wnd_name, image)
|
|
return 0
|
|
else:
|
|
if self.type == 'rects':
|
|
self.result.append ( result )
|
|
elif self.type == 'landmarks':
|
|
self.result.append ( result )
|
|
elif self.type == 'final':
|
|
self.result += result
|
|
|
|
return 1
|
|
|
|
#override
|
|
def onFinalizeAndGetResult(self):
|
|
if self.manual == True:
|
|
cv2.destroyAllWindows()
|
|
return self.result
|
|
|
|
class DeletedFilesSearcherSubprocessor(SubprocessorBase):
|
|
#override
|
|
def __init__(self, input_paths, debug_paths ):
|
|
self.input_paths = input_paths
|
|
self.debug_paths_stems = [ Path(d).stem for d in debug_paths]
|
|
self.result = []
|
|
super().__init__('DeletedFilesSearcherSubprocessor', 60)
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
|
|
yield 'CPU%d' % (i), {}, {'device_idx': i,
|
|
'device_name': 'CPU%d' % (i),
|
|
'debug_paths_stems' : self.debug_paths_stems
|
|
}
|
|
|
|
#override
|
|
def get_no_process_started_message(self):
|
|
print ( 'Unable to start CPU processes.')
|
|
|
|
#override
|
|
def onHostGetProgressBarDesc(self):
|
|
return "Searching deleted files"
|
|
|
|
#override
|
|
def onHostGetProgressBarLen(self):
|
|
return len (self.input_paths)
|
|
|
|
#override
|
|
def onHostGetData(self, host_dict):
|
|
if len (self.input_paths) > 0:
|
|
return [self.input_paths.pop(0)]
|
|
return None
|
|
|
|
#override
|
|
def onHostDataReturn (self, host_dict, data):
|
|
self.input_paths.insert(0, data[0])
|
|
|
|
#override
|
|
def onClientInitialize(self, client_dict):
|
|
self.debug_paths_stems = client_dict['debug_paths_stems']
|
|
return None
|
|
|
|
#override
|
|
def onClientProcessData(self, data):
|
|
input_path_stem = Path(data[0]).stem
|
|
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
|
|
|
|
#override
|
|
def onClientGetDataName (self, data):
|
|
#return string identificator of your data
|
|
return data[0]
|
|
|
|
#override
|
|
def onHostResult (self, host_dict, data, result):
|
|
if result == False:
|
|
self.result.append( data[0] )
|
|
return 1
|
|
|
|
#override
|
|
def onFinalizeAndGetResult(self):
|
|
return self.result
|
|
|
|
'''
|
|
detector
|
|
'dlib'
|
|
'mt'
|
|
'manual'
|
|
|
|
face_type
|
|
'full_face'
|
|
'avatar'
|
|
'''
|
|
def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, cpu_only=False, manual_fix=False, manual_output_debug_fix=False, manual_window_size=1368, image_size=256, face_type='full_face'):
|
|
print ("Running extractor.\r\n")
|
|
|
|
input_path = Path(input_dir)
|
|
output_path = Path(output_dir)
|
|
face_type = FaceType.fromString(face_type)
|
|
|
|
if not input_path.exists():
|
|
print('Input directory not found. Please ensure it exists.')
|
|
return
|
|
|
|
if output_path.exists():
|
|
if not manual_output_debug_fix:
|
|
for filename in Path_utils.get_image_paths(output_path):
|
|
Path(filename).unlink()
|
|
else:
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
if manual_output_debug_fix:
|
|
debug = True
|
|
detector = 'manual'
|
|
print('Performing re-extract frames which were deleted from _debug directory.')
|
|
|
|
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose=True)
|
|
|
|
if debug:
|
|
debug_output_path = Path(str(output_path) + '_debug')
|
|
|
|
if manual_output_debug_fix:
|
|
if not debug_output_path.exists():
|
|
print ("%s not found " % ( str(debug_output_path) ))
|
|
return
|
|
|
|
input_path_image_paths = DeletedFilesSearcherSubprocessor ( input_path_image_paths, Path_utils.get_image_paths(debug_output_path) ).process()
|
|
input_path_image_paths = sorted (input_path_image_paths)
|
|
else:
|
|
if debug_output_path.exists():
|
|
for filename in Path_utils.get_image_paths(debug_output_path):
|
|
Path(filename).unlink()
|
|
else:
|
|
debug_output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
images_found = len(input_path_image_paths)
|
|
faces_detected = 0
|
|
if images_found != 0:
|
|
if detector == 'manual':
|
|
print ('Performing manual extract...')
|
|
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).process()
|
|
else:
|
|
print ('Performing 1st pass...')
|
|
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, detector=detector).process()
|
|
|
|
print ('Performing 2nd pass...')
|
|
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).process()
|
|
|
|
if manual_fix:
|
|
print ('Performing manual fix...')
|
|
|
|
if all ( np.array ( [ len(data[1]) > 0 for data in extracted_faces] ) == True ):
|
|
print ('All faces are detected, manual fix not needed.')
|
|
else:
|
|
extracted_faces = ExtractSubprocessor (extracted_faces, 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
|
|
|
|
if len(extracted_faces) > 0:
|
|
print ('Performing 3rd pass...')
|
|
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, output_path=output_path).process()
|
|
faces_detected = len(final_imgs_paths)
|
|
|
|
print('-------------------------')
|
|
print('Images found: %d' % (images_found) )
|
|
print('Faces detected: %d' % (faces_detected) )
|
|
print('-------------------------') |