DeepFaceLab/core/leras/device.py

208 lines
No EOL
7.5 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
import ctypes
import os
class Device(object):
def __init__(self, index, name, total_mem, free_mem, cc=0):
self.index = index
self.name = name
self.cc = cc
self.total_mem = total_mem
self.total_mem_gb = total_mem / 1024**3
self.free_mem = free_mem
self.free_mem_gb = free_mem / 1024**3
def __str__(self):
return f"[{self.index}]:[{self.name}][{self.free_mem_gb:.3}/{self.total_mem_gb :.3}]"
class Devices(object):
all_devices = None
def __init__(self, devices):
self.devices = devices
def __len__(self):
return len(self.devices)
def __getitem__(self, key):
result = self.devices[key]
if isinstance(key, slice):
return Devices(result)
return result
def __iter__(self):
for device in self.devices:
yield device
def get_best_device(self):
result = None
idx_mem = 0
for device in self.devices:
mem = device.total_mem
if mem > idx_mem:
result = device
idx_mem = mem
return result
def get_worst_device(self):
result = None
idx_mem = sys.maxsize
for device in self.devices:
mem = device.total_mem
if mem < idx_mem:
result = device
idx_mem = mem
return result
def get_device_by_index(self, idx):
for device in self.devices:
if device.index == idx:
return device
return None
def get_devices_from_index_list(self, idx_list):
result = []
for device in self.devices:
if device.index in idx_list:
result += [device]
return Devices(result)
def get_equal_devices(self, device):
device_name = device.name
result = []
for device in self.devices:
if device.name == device_name:
result.append (device)
return Devices(result)
def get_devices_at_least_mem(self, totalmemsize_gb):
result = []
for device in self.devices:
if device.total_mem >= totalmemsize_gb*(1024**3):
result.append (device)
return Devices(result)
@staticmethod
def initialize_main_env():
os.environ['NN_DEVICES_INITIALIZED'] = '1'
os.environ['NN_DEVICES_COUNT'] = '0'
os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647'
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except:
continue
else:
break
else:
return Devices([])
nGpus = ctypes.c_int()
name = b' ' * 200
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
freeMem = ctypes.c_size_t()
totalMem = ctypes.c_size_t()
result = ctypes.c_int()
device = ctypes.c_int()
context = ctypes.c_void_p()
error_str = ctypes.c_char_p()
devices = []
if cuda.cuInit(0) == 0 and \
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
for i in range(nGpus.value):
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
continue
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
cc = cc_major.value * 10 + cc_minor.value
if cc >= min_cc:
devices.append ( {'name' : name.split(b'\0', 1)[0].decode(),
'total_mem' : totalMem.value,
'free_mem' : freeMem.value,
'cc' : cc
})
cuda.cuCtxDetach(context)
os.environ['NN_DEVICES_COUNT'] = str(len(devices))
for i, device in enumerate(devices):
os.environ[f'NN_DEVICE_{i}_NAME'] = device['name']
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
@staticmethod
def getDevices():
if Devices.all_devices is None:
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
devices = []
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
devices.append ( Device(index=i,
name=os.environ[f'NN_DEVICE_{i}_NAME'],
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']),
cc=int(os.environ[f'NN_DEVICE_{i}_CC']) ))
Devices.all_devices = Devices(devices)
return Devices.all_devices
"""
if Devices.all_devices is None:
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except:
continue
else:
break
else:
return Devices([])
nGpus = ctypes.c_int()
name = b' ' * 200
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
freeMem = ctypes.c_size_t()
totalMem = ctypes.c_size_t()
result = ctypes.c_int()
device = ctypes.c_int()
context = ctypes.c_void_p()
error_str = ctypes.c_char_p()
devices = []
if cuda.cuInit(0) == 0 and \
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
for i in range(nGpus.value):
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
continue
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
cc = cc_major.value * 10 + cc_minor.value
if cc >= min_cc:
devices.append ( Device(index=i,
name=name.split(b'\0', 1)[0].decode(),
total_mem=totalMem.value,
free_mem=freeMem.value,
cc=cc) )
cuda.cuCtxDetach(context)
Devices.all_devices = Devices(devices)
return Devices.all_devices
"""