DeepFaceLab/facelib/FANSegmentator.py

108 lines
No EOL
4.4 KiB
Python

import numpy as np
import os
import cv2
from pathlib import Path
from nnlib import nnlib
from interact import interact as io
class FANSegmentator(object):
def __init__ (self, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False):
exec( nnlib.import_all(), locals(), globals() )
self.model = FANSegmentator.BuildModel(resolution, ngf=32)
if weights_file_root:
weights_file_root = Path(weights_file_root)
else:
weights_file_root = Path(__file__).parent
self.weights_path = weights_file_root / ('FANSeg_%d_%s.h5' % (resolution, face_type_str) )
if load_weights:
self.model.load_weights (str(self.weights_path))
else:
if training:
io.log_info ("Initializing CA weights...")
conv_weights_list = []
for layer in self.model.layers:
if type(layer) == Conv2D:
conv_weights_list += [layer.weights[0]] # Conv2D kernel_weights
CAInitializerMP(conv_weights_list)
if training:
self.model.compile(loss='mse', optimizer=Adam(tf_cpu_mode=2))
def __enter__(self):
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
return False #pass exception between __enter__ and __exit__ to outter level
def save_weights(self):
self.model.save_weights (str(self.weights_path))
def train_on_batch(self, inp, outp):
return self.model.train_on_batch(inp, outp)
def extract_from_bgr (self, input_image):
return np.clip ( (self.model.predict(input_image) + 1) / 2.0, 0, 1.0 )
@staticmethod
def BuildModel ( resolution, ngf=64):
exec( nnlib.import_all(), locals(), globals() )
inp = Input ( (resolution,resolution,3) )
x = inp
x = FANSegmentator.EncFlow(ngf=ngf)(x)
x = FANSegmentator.DecFlow(ngf=ngf)(x)
model = Model(inp,x)
return model
@staticmethod
def EncFlow(ngf=64, num_downs=4):
exec( nnlib.import_all(), locals(), globals() )
use_bias = True
def XNormalization(x):
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(XNormalization(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x)))
return func
def func(input):
x = input
result = []
for i in range(num_downs):
x = downscale ( min(ngf*(2**i), ngf*8) )(x)
result += [x]
return result
return func
@staticmethod
def DecFlow(output_nc=1, ngf=64, activation='tanh'):
exec (nnlib.import_all(), locals(), globals())
use_bias = True
def XNormalization(x):
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
def upscale (dim):
def func(x):
return SubpixelUpscaler()( LeakyReLU(0.1)(XNormalization(Conv2D(dim, kernel_size=3, strides=1, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x))))
return func
def func(input):
input_len = len(input)
x = input[input_len-1]
for i in range(input_len-1, -1, -1):
x = upscale( min(ngf* (2**i) *4, ngf*8 *4 ) )(x)
if i != 0:
x = Concatenate(axis=3)([ input[i-1] , x])
return Conv2D(output_nc, 3, 1, 'same', activation=activation)(x)
return func