mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
197 lines
7.3 KiB
Python
197 lines
7.3 KiB
Python
import os
|
|
import pickle
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core.interact import interact as io
|
|
from core.leras import nn
|
|
|
|
"""
|
|
Dataset used to train located in official DFL mega.nz folder
|
|
https://mega.nz/#F!b9MzCK4B!zEAG9txu7uaRUjXz9PtBqg
|
|
|
|
using https://github.com/ternaus/TernausNet
|
|
TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation
|
|
"""
|
|
|
|
class TernausNet(object):
|
|
VERSION = 1
|
|
def __init__ (self, name, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False, place_model_on_cpu=False):
|
|
nn.initialize(data_format="NHWC")
|
|
tf = nn.tf
|
|
|
|
class Ternaus(nn.ModelBase):
|
|
def on_build(self, in_ch, ch):
|
|
|
|
self.features_0 = nn.Conv2D (in_ch, ch, kernel_size=3, padding='SAME')
|
|
self.blurpool_0 = nn.BlurPool (filt_size=3)
|
|
|
|
self.features_3 = nn.Conv2D (ch, ch*2, kernel_size=3, padding='SAME')
|
|
self.blurpool_3 = nn.BlurPool (filt_size=3)
|
|
|
|
self.features_6 = nn.Conv2D (ch*2, ch*4, kernel_size=3, padding='SAME')
|
|
self.features_8 = nn.Conv2D (ch*4, ch*4, kernel_size=3, padding='SAME')
|
|
self.blurpool_8 = nn.BlurPool (filt_size=3)
|
|
|
|
self.features_11 = nn.Conv2D (ch*4, ch*8, kernel_size=3, padding='SAME')
|
|
self.features_13 = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
|
|
self.blurpool_13 = nn.BlurPool (filt_size=3)
|
|
|
|
self.features_16 = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
|
|
self.features_18 = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
|
|
self.blurpool_18 = nn.BlurPool (filt_size=3)
|
|
|
|
self.conv_center = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
|
|
|
|
self.conv1_up = nn.Conv2DTranspose (ch*8, ch*4, kernel_size=3, padding='SAME')
|
|
self.conv1 = nn.Conv2D (ch*12, ch*8, kernel_size=3, padding='SAME')
|
|
|
|
self.conv2_up = nn.Conv2DTranspose (ch*8, ch*4, kernel_size=3, padding='SAME')
|
|
self.conv2 = nn.Conv2D (ch*12, ch*8, kernel_size=3, padding='SAME')
|
|
|
|
self.conv3_up = nn.Conv2DTranspose (ch*8, ch*2, kernel_size=3, padding='SAME')
|
|
self.conv3 = nn.Conv2D (ch*6, ch*4, kernel_size=3, padding='SAME')
|
|
|
|
self.conv4_up = nn.Conv2DTranspose (ch*4, ch, kernel_size=3, padding='SAME')
|
|
self.conv4 = nn.Conv2D (ch*3, ch*2, kernel_size=3, padding='SAME')
|
|
|
|
self.conv5_up = nn.Conv2DTranspose (ch*2, ch//2, kernel_size=3, padding='SAME')
|
|
self.conv5 = nn.Conv2D (ch//2+ch, ch, kernel_size=3, padding='SAME')
|
|
|
|
self.out_conv = nn.Conv2D (ch, 1, kernel_size=3, padding='SAME')
|
|
|
|
def forward(self, inp):
|
|
x, = inp
|
|
|
|
x = x0 = tf.nn.relu(self.features_0(x))
|
|
x = self.blurpool_0(x)
|
|
|
|
x = x1 = tf.nn.relu(self.features_3(x))
|
|
x = self.blurpool_3(x)
|
|
|
|
x = tf.nn.relu(self.features_6(x))
|
|
x = x2 = tf.nn.relu(self.features_8(x))
|
|
x = self.blurpool_8(x)
|
|
|
|
x = tf.nn.relu(self.features_11(x))
|
|
x = x3 = tf.nn.relu(self.features_13(x))
|
|
x = self.blurpool_13(x)
|
|
|
|
x = tf.nn.relu(self.features_16(x))
|
|
x = x4 = tf.nn.relu(self.features_18(x))
|
|
x = self.blurpool_18(x)
|
|
|
|
x = self.conv_center(x)
|
|
|
|
x = tf.nn.relu(self.conv1_up(x))
|
|
x = tf.concat( [x,x4], -1)
|
|
x = tf.nn.relu(self.conv1(x))
|
|
|
|
x = tf.nn.relu(self.conv2_up(x))
|
|
x = tf.concat( [x,x3], -1)
|
|
x = tf.nn.relu(self.conv2(x))
|
|
|
|
x = tf.nn.relu(self.conv3_up(x))
|
|
x = tf.concat( [x,x2], -1)
|
|
x = tf.nn.relu(self.conv3(x))
|
|
|
|
x = tf.nn.relu(self.conv4_up(x))
|
|
x = tf.concat( [x,x1], -1)
|
|
x = tf.nn.relu(self.conv4(x))
|
|
|
|
x = tf.nn.relu(self.conv5_up(x))
|
|
x = tf.concat( [x,x0], -1)
|
|
x = tf.nn.relu(self.conv5(x))
|
|
|
|
x = tf.nn.sigmoid(self.out_conv(x))
|
|
return x
|
|
|
|
if weights_file_root is not None:
|
|
weights_file_root = Path(weights_file_root)
|
|
else:
|
|
weights_file_root = Path(__file__).parent
|
|
self.weights_path = weights_file_root / ('%s_%d_%s.npy' % (name, resolution, face_type_str) )
|
|
|
|
e = tf.device('/CPU:0') if place_model_on_cpu else None
|
|
|
|
if e is not None: e.__enter__()
|
|
self.net = Ternaus(3, 64, name='Ternaus')
|
|
if load_weights:
|
|
self.net.load_weights (self.weights_path)
|
|
else:
|
|
self.net.init_weights()
|
|
if e is not None: e.__exit__(None,None,None)
|
|
|
|
self.net.build_for_run ( [(tf.float32, nn.get4Dshape (resolution,resolution,3) )] )
|
|
|
|
if training:
|
|
raise Exception("training not supported yet")
|
|
|
|
|
|
"""
|
|
if training:
|
|
try:
|
|
with open( Path(__file__).parent / 'vgg11_enc_weights.npy', 'rb' ) as f:
|
|
d = pickle.loads (f.read())
|
|
|
|
for i in [0,3,6,8,11,13,16,18]:
|
|
s = 'features.%d' % i
|
|
|
|
self.model.get_layer (s).set_weights ( d[s] )
|
|
except:
|
|
io.log_err("Unable to load VGG11 pretrained weights from vgg11_enc_weights.npy")
|
|
|
|
conv_weights_list = []
|
|
for layer in self.model.layers:
|
|
if 'CA.' in layer.name:
|
|
conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights
|
|
CAInitializerMP ( conv_weights_list )
|
|
"""
|
|
|
|
|
|
"""
|
|
if training:
|
|
inp_t = Input ( (resolution, resolution, 3) )
|
|
real_t = Input ( (resolution, resolution, 1) )
|
|
out_t = self.model(inp_t)
|
|
|
|
loss = K.mean(10*K.binary_crossentropy(real_t,out_t) )
|
|
|
|
out_t_diff1 = out_t[:, 1:, :, :] - out_t[:, :-1, :, :]
|
|
out_t_diff2 = out_t[:, :, 1:, :] - out_t[:, :, :-1, :]
|
|
|
|
total_var_loss = K.mean( 0.1*K.abs(out_t_diff1), axis=[1, 2, 3] ) + K.mean( 0.1*K.abs(out_t_diff2), axis=[1, 2, 3] )
|
|
|
|
opt = Adam(lr=0.0001, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2)
|
|
|
|
self.train_func = K.function ( [inp_t, real_t], [K.mean(loss)], opt.get_updates( [loss], self.model.trainable_weights) )
|
|
"""
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
|
|
return False #pass exception between __enter__ and __exit__ to outter level
|
|
|
|
def save_weights(self):
|
|
self.net.save_weights (str(self.weights_path))
|
|
|
|
def train(self, inp, real):
|
|
loss, = self.train_func ([inp, real])
|
|
return loss
|
|
|
|
def extract (self, input_image):
|
|
input_shape_len = len(input_image.shape)
|
|
if input_shape_len == 3:
|
|
input_image = input_image[np.newaxis,...]
|
|
|
|
result = np.clip ( self.net.run([input_image]), 0, 1.0 )
|
|
result[result < 0.1] = 0 #get rid of noise
|
|
|
|
if input_shape_len == 3:
|
|
result = result[0]
|
|
|
|
return result
|