DeepFaceLab/facelib/LandmarksProcessor.py
2019-08-30 09:49:07 +04:00

445 lines
16 KiB
Python

import colorsys
import math
from enum import IntEnum
import cv2
import numpy as np
import numpy.linalg as npla
import imagelib
import mathlib
from facelib import FaceType
from imagelib import IEPolys
from mathlib.umeyama import umeyama
landmarks_2D = np.array([
[ 0.000213256, 0.106454 ], #17
[ 0.0752622, 0.038915 ], #18
[ 0.18113, 0.0187482 ], #19
[ 0.29077, 0.0344891 ], #20
[ 0.393397, 0.0773906 ], #21
[ 0.586856, 0.0773906 ], #22
[ 0.689483, 0.0344891 ], #23
[ 0.799124, 0.0187482 ], #24
[ 0.904991, 0.038915 ], #25
[ 0.98004, 0.106454 ], #26
[ 0.490127, 0.203352 ], #27
[ 0.490127, 0.307009 ], #28
[ 0.490127, 0.409805 ], #29
[ 0.490127, 0.515625 ], #30
[ 0.36688, 0.587326 ], #31
[ 0.426036, 0.609345 ], #32
[ 0.490127, 0.628106 ], #33
[ 0.554217, 0.609345 ], #34
[ 0.613373, 0.587326 ], #35
[ 0.121737, 0.216423 ], #36
[ 0.187122, 0.178758 ], #37
[ 0.265825, 0.179852 ], #38
[ 0.334606, 0.231733 ], #39
[ 0.260918, 0.245099 ], #40
[ 0.182743, 0.244077 ], #41
[ 0.645647, 0.231733 ], #42
[ 0.714428, 0.179852 ], #43
[ 0.793132, 0.178758 ], #44
[ 0.858516, 0.216423 ], #45
[ 0.79751, 0.244077 ], #46
[ 0.719335, 0.245099 ], #47
[ 0.254149, 0.780233 ], #48
[ 0.340985, 0.745405 ], #49
[ 0.428858, 0.727388 ], #50
[ 0.490127, 0.742578 ], #51
[ 0.551395, 0.727388 ], #52
[ 0.639268, 0.745405 ], #53
[ 0.726104, 0.780233 ], #54
[ 0.642159, 0.864805 ], #55
[ 0.556721, 0.902192 ], #56
[ 0.490127, 0.909281 ], #57
[ 0.423532, 0.902192 ], #58
[ 0.338094, 0.864805 ], #59
[ 0.290379, 0.784792 ], #60
[ 0.428096, 0.778746 ], #61
[ 0.490127, 0.785343 ], #62
[ 0.552157, 0.778746 ], #63
[ 0.689874, 0.784792 ], #64
[ 0.553364, 0.824182 ], #65
[ 0.490127, 0.831803 ], #66
[ 0.42689 , 0.824182 ] #67
], dtype=np.float32)
landmarks_2D_new = np.array([
[ 0.000213256, 0.106454 ], #17
[ 0.0752622, 0.038915 ], #18
[ 0.18113, 0.0187482 ], #19
[ 0.29077, 0.0344891 ], #20
[ 0.393397, 0.0773906 ], #21
[ 0.586856, 0.0773906 ], #22
[ 0.689483, 0.0344891 ], #23
[ 0.799124, 0.0187482 ], #24
[ 0.904991, 0.038915 ], #25
[ 0.98004, 0.106454 ], #26
[ 0.490127, 0.203352 ], #27
[ 0.490127, 0.307009 ], #28
[ 0.490127, 0.409805 ], #29
[ 0.490127, 0.515625 ], #30
[ 0.36688, 0.587326 ], #31
[ 0.426036, 0.609345 ], #32
[ 0.490127, 0.628106 ], #33
[ 0.554217, 0.609345 ], #34
[ 0.613373, 0.587326 ], #35
[ 0.121737, 0.216423 ], #36
[ 0.187122, 0.178758 ], #37
[ 0.265825, 0.179852 ], #38
[ 0.334606, 0.231733 ], #39
[ 0.260918, 0.245099 ], #40
[ 0.182743, 0.244077 ], #41
[ 0.645647, 0.231733 ], #42
[ 0.714428, 0.179852 ], #43
[ 0.793132, 0.178758 ], #44
[ 0.858516, 0.216423 ], #45
[ 0.79751, 0.244077 ], #46
[ 0.719335, 0.245099 ], #47
[ 0.254149, 0.780233 ], #48
[ 0.726104, 0.780233 ], #54
], dtype=np.float32)
# 68 point landmark definitions
landmarks_68_pt = { "mouth": (48,68),
"right_eyebrow": (17, 22),
"left_eyebrow": (22, 27),
"right_eye": (36, 42),
"left_eye": (42, 48),
"nose": (27, 36), # missed one point
"jaw": (0, 17) }
landmarks_68_3D = np.array( [
[-73.393523 , -29.801432 , 47.667532 ],
[-72.775014 , -10.949766 , 45.909403 ],
[-70.533638 , 7.929818 , 44.842580 ],
[-66.850058 , 26.074280 , 43.141114 ],
[-59.790187 , 42.564390 , 38.635298 ],
[-48.368973 , 56.481080 , 30.750622 ],
[-34.121101 , 67.246992 , 18.456453 ],
[-17.875411 , 75.056892 , 3.609035 ],
[0.098749 , 77.061286 , -0.881698 ],
[17.477031 , 74.758448 , 5.181201 ],
[32.648966 , 66.929021 , 19.176563 ],
[46.372358 , 56.311389 , 30.770570 ],
[57.343480 , 42.419126 , 37.628629 ],
[64.388482 , 25.455880 , 40.886309 ],
[68.212038 , 6.990805 , 42.281449 ],
[70.486405 , -11.666193 , 44.142567 ],
[71.375822 , -30.365191 , 47.140426 ],
[-61.119406 , -49.361602 , 14.254422 ],
[-51.287588 , -58.769795 , 7.268147 ],
[-37.804800 , -61.996155 , 0.442051 ],
[-24.022754 , -61.033399 , -6.606501 ],
[-11.635713 , -56.686759 , -11.967398 ],
[12.056636 , -57.391033 , -12.051204 ],
[25.106256 , -61.902186 , -7.315098 ],
[38.338588 , -62.777713 , -1.022953 ],
[51.191007 , -59.302347 , 5.349435 ],
[60.053851 , -50.190255 , 11.615746 ],
[0.653940 , -42.193790 , -13.380835 ],
[0.804809 , -30.993721 , -21.150853 ],
[0.992204 , -19.944596 , -29.284036 ],
[1.226783 , -8.414541 , -36.948060 ],
[-14.772472 , 2.598255 , -20.132003 ],
[-7.180239 , 4.751589 , -23.536684 ],
[0.555920 , 6.562900 , -25.944448 ],
[8.272499 , 4.661005 , -23.695741 ],
[15.214351 , 2.643046 , -20.858157 ],
[-46.047290 , -37.471411 , 7.037989 ],
[-37.674688 , -42.730510 , 3.021217 ],
[-27.883856 , -42.711517 , 1.353629 ],
[-19.648268 , -36.754742 , -0.111088 ],
[-28.272965 , -35.134493 , -0.147273 ],
[-38.082418 , -34.919043 , 1.476612 ],
[19.265868 , -37.032306 , -0.665746 ],
[27.894191 , -43.342445 , 0.247660 ],
[37.437529 , -43.110822 , 1.696435 ],
[45.170805 , -38.086515 , 4.894163 ],
[38.196454 , -35.532024 , 0.282961 ],
[28.764989 , -35.484289 , -1.172675 ],
[-28.916267 , 28.612716 , -2.240310 ],
[-17.533194 , 22.172187 , -15.934335 ],
[-6.684590 , 19.029051 , -22.611355 ],
[0.381001 , 20.721118 , -23.748437 ],
[8.375443 , 19.035460 , -22.721995 ],
[18.876618 , 22.394109 , -15.610679 ],
[28.794412 , 28.079924 , -3.217393 ],
[19.057574 , 36.298248 , -14.987997 ],
[8.956375 , 39.634575 , -22.554245 ],
[0.381549 , 40.395647 , -23.591626 ],
[-7.428895 , 39.836405 , -22.406106 ],
[-18.160634 , 36.677899 , -15.121907 ],
[-24.377490 , 28.677771 , -4.785684 ],
[-6.897633 , 25.475976 , -20.893742 ],
[0.340663 , 26.014269 , -22.220479 ],
[8.444722 , 25.326198 , -21.025520 ],
[24.474473 , 28.323008 , -5.712776 ],
[8.449166 , 30.596216 , -20.671489 ],
[0.205322 , 31.408738 , -21.903670 ],
[-7.198266 , 30.844876 , -20.328022 ] ], dtype=np.float32)
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
"""
if face_type == FaceType.AVATAR:
centroid = np.mean (image_landmarks, axis=0)
mat = umeyama(image_landmarks[17:], landmarks_2D, True)[0:2]
a, c = mat[0,0], mat[1,0]
scale = math.sqrt((a * a) + (c * c))
padding = (output_size / 64) * 32
mat = np.eye ( 2,3 )
mat[0,2] = -centroid[0]
mat[1,2] = -centroid[1]
mat = mat * scale * (output_size / 3)
mat[:,2] += output_size / 2
else:
"""
remove_align = False
if face_type == FaceType.FULL_NO_ALIGN:
face_type = FaceType.FULL
remove_align = True
elif face_type == FaceType.HEAD_NO_ALIGN:
face_type = FaceType.HEAD
remove_align = True
if face_type == FaceType.HALF:
padding = 0
elif face_type == FaceType.FULL:
padding = (output_size / 64) * 12
elif face_type == FaceType.HEAD:
padding = (output_size / 64) * 21
else:
raise ValueError ('wrong face_type: ', face_type)
#mat = umeyama(image_landmarks[17:], landmarks_2D, True)[0:2]
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
mat = mat * (output_size - 2 * padding)
mat[:,2] += padding
mat *= (1 / scale)
mat[:,2] += -output_size*( ( (1 / scale) - 1.0 ) / 2 )
if remove_align:
bbox = transform_points ( [ (0,0), (0,output_size-1), (output_size-1, output_size-1), (output_size-1,0) ], mat, True)
area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
side = math.sqrt(area) / 2
center = transform_points ( [(output_size/2,output_size/2)], mat, True)
pts1 = np.float32([ center+[-side,-side], center+[side,-side], center+[-side,side] ])
pts2 = np.float32([[0,0],[output_size-1,0],[0,output_size-1]])
mat = cv2.getAffineTransform(pts1,pts2)
return mat
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None):
if len(image_landmarks) != 68:
raise Exception('get_image_hull_mask works only with 68 landmarks')
int_lmrks = np.array(image_landmarks.copy(), dtype=np.int)
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
# #nose
ml_pnt = (int_lmrks[36] + int_lmrks[0]) // 2
mr_pnt = (int_lmrks[16] + int_lmrks[45]) // 2
# mid points between the mid points and eye
ql_pnt = (int_lmrks[36] + ml_pnt) // 2
qr_pnt = (int_lmrks[45] + mr_pnt) // 2
# Top of the eye arrays
bot_l = np.array((ql_pnt, int_lmrks[36], int_lmrks[37], int_lmrks[38], int_lmrks[39]))
bot_r = np.array((int_lmrks[42], int_lmrks[43], int_lmrks[44], int_lmrks[45], qr_pnt))
# Eyebrow arrays
top_l = int_lmrks[17:22]
top_r = int_lmrks[22:27]
# Adjust eyebrow arrays
int_lmrks[17:22] = top_l + eyebrows_expand_mod * 0.5 * (top_l - bot_l)
int_lmrks[22:27] = top_r + eyebrows_expand_mod * 0.5 * (top_r - bot_r)
r_jaw = (int_lmrks[0:9], int_lmrks[17:18])
l_jaw = (int_lmrks[8:17], int_lmrks[26:27])
r_cheek = (int_lmrks[17:20], int_lmrks[8:9])
l_cheek = (int_lmrks[24:27], int_lmrks[8:9])
nose_ridge = (int_lmrks[19:25], int_lmrks[8:9],)
r_eye = (int_lmrks[17:22], int_lmrks[27:28], int_lmrks[31:36], int_lmrks[8:9])
l_eye = (int_lmrks[22:27], int_lmrks[27:28], int_lmrks[31:36], int_lmrks[8:9])
nose = (int_lmrks[27:31], int_lmrks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), 1)
if ie_polys is not None:
ie_polys.overlay_mask(hull_mask)
return hull_mask
def get_image_eye_mask (image_shape, image_landmarks):
if len(image_landmarks) != 68:
raise Exception('get_image_eye_mask works only with 68 landmarks')
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[36:42]), (1,) )
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[42:48]), (1,) )
return hull_mask
def blur_image_hull_mask (hull_mask):
maxregion = np.argwhere(hull_mask==1.0)
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx;
leny = maxy - miny;
masky = int(minx+(lenx//2))
maskx = int(miny+(leny//2))
lowest_len = min (lenx, leny)
ero = int( lowest_len * 0.085 )
blur = int( lowest_len * 0.10 )
hull_mask = cv2.erode(hull_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
hull_mask = cv2.blur(hull_mask, (blur, blur) )
hull_mask = np.expand_dims (hull_mask,-1)
return hull_mask
mirror_idxs = [
[0,16],
[1,15],
[2,14],
[3,13],
[4,12],
[5,11],
[6,10],
[7,9],
[17,26],
[18,25],
[19,24],
[20,23],
[21,22],
[36,45],
[37,44],
[38,43],
[39,42],
[40,47],
[41,46],
[31,35],
[32,34],
[50,52],
[49,53],
[48,54],
[59,55],
[58,56],
[67,65],
[60,64],
[61,63] ]
def mirror_landmarks (landmarks, val):
result = landmarks.copy()
for idx in mirror_idxs:
result [ idx ] = result [ idx[::-1] ]
result[:,0] = val - result[:,0] - 1
return result
def draw_landmarks (image, image_landmarks, color=(0,255,0), transparent_mask=False, ie_polys=None):
if len(image_landmarks) != 68:
raise Exception('get_image_eye_mask works only with 68 landmarks')
int_lmrks = np.array(image_landmarks, dtype=np.int)
jaw = int_lmrks[slice(*landmarks_68_pt["jaw"])]
right_eyebrow = int_lmrks[slice(*landmarks_68_pt["right_eyebrow"])]
left_eyebrow = int_lmrks[slice(*landmarks_68_pt["left_eyebrow"])]
mouth = int_lmrks[slice(*landmarks_68_pt["mouth"])]
right_eye = int_lmrks[slice(*landmarks_68_pt["right_eye"])]
left_eye = int_lmrks[slice(*landmarks_68_pt["left_eye"])]
nose = int_lmrks[slice(*landmarks_68_pt["nose"])]
# open shapes
cv2.polylines(image, tuple(np.array([v]) for v in ( right_eyebrow, jaw, left_eyebrow, np.concatenate((nose, [nose[-6]])) )),
False, color, lineType=cv2.LINE_AA)
# closed shapes
cv2.polylines(image, tuple(np.array([v]) for v in (right_eye, left_eye, mouth)),
True, color, lineType=cv2.LINE_AA)
# the rest of the cicles
for x, y in np.concatenate((right_eyebrow, left_eyebrow, mouth, right_eye, left_eye, nose), axis=0):
cv2.circle(image, (x, y), 1, color, 1, lineType=cv2.LINE_AA)
# jaw big circles
for x, y in jaw:
cv2.circle(image, (x, y), 2, color, lineType=cv2.LINE_AA)
if transparent_mask:
mask = get_image_hull_mask (image.shape, image_landmarks, ie_polys=ie_polys)
image[...] = ( image * (1-mask) + image * mask / 2 )[...]
def draw_rect_landmarks (image, rect, image_landmarks, face_size, face_type, transparent_mask=False, ie_polys=None, landmarks_color=(0,255,0)):
draw_landmarks(image, image_landmarks, color=landmarks_color, transparent_mask=transparent_mask, ie_polys=ie_polys)
imagelib.draw_rect (image, rect, (255,0,0), 2 )
image_to_face_mat = get_transform_mat (image_landmarks, face_size, face_type)
points = transform_points ( [ (0,0), (0,face_size-1), (face_size-1, face_size-1), (face_size-1,0) ], image_to_face_mat, True)
imagelib.draw_polygon (image, points, (0,0,255), 2)
def calc_face_pitch(landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array (landmarks)
t = ( (landmarks[6][1]-landmarks[8][1]) + (landmarks[10][1]-landmarks[8][1]) ) / 2.0
b = landmarks[8][1]
return float(b-t)
def calc_face_yaw(landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array (landmarks)
l = ( (landmarks[27][0]-landmarks[0][0]) + (landmarks[28][0]-landmarks[1][0]) + (landmarks[29][0]-landmarks[2][0]) ) / 3.0
r = ( (landmarks[16][0]-landmarks[27][0]) + (landmarks[15][0]-landmarks[28][0]) + (landmarks[14][0]-landmarks[29][0]) ) / 3.0
return float(r-l)
#returns pitch,yaw,roll [-1...+1]
def estimate_pitch_yaw_roll(aligned_256px_landmarks):
shape = (256,256)
focal_length = shape[1]
camera_center = (shape[1] / 2, shape[0] / 2)
camera_matrix = np.array(
[[focal_length, 0, camera_center[0]],
[0, focal_length, camera_center[1]],
[0, 0, 1]], dtype=np.float32)
(_, rotation_vector, translation_vector) = cv2.solvePnP(
landmarks_68_3D,
aligned_256px_landmarks.astype(np.float32),
camera_matrix,
np.zeros((4, 1)) )
pitch, yaw, roll = mathlib.rotationMatrixToEulerAngles( cv2.Rodrigues(rotation_vector)[0] )
pitch = np.clip ( pitch/1.30, -1.0, 1.0 )
yaw = np.clip ( yaw / 1.11, -1.0, 1.0 )
roll = np.clip ( roll/3.15, -1.0, 1.0 )
return -pitch, yaw, roll