DeepFaceLab/converters/ConverterConfig.py
2019-08-25 00:30:05 +04:00

317 lines
No EOL
13 KiB
Python

import numpy as np
import copy
from facelib import FaceType
from interact import interact as io
class ConverterConfig(object):
TYPE_NONE = 0
TYPE_MASKED = 1
TYPE_FACE_AVATAR = 2
####
TYPE_IMAGE = 3
TYPE_IMAGE_WITH_LANDMARKS = 4
def __init__(self, type=0, predictor_func=None,
predictor_input_shape=None):
self.type = type
self.predictor_func = predictor_func
self.predictor_input_shape = predictor_input_shape
self.dcscn_upscale_func = None
self.fanseg_input_size = None
self.fanseg_extract_func = None
def copy(self):
return copy.copy(self)
#overridable
def ask_settings(self):
pass
#overridable
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, ConverterConfig):
return True
return False
#overridable
def __str__(self):
return "ConverterConfig: ."
class ConverterConfigMasked(ConverterConfig):
def __init__(self, predictor_func=None,
predictor_input_shape=None,
predictor_masked=True,
face_type=FaceType.FULL,
default_mode = 4,
base_erode_mask_modifier = 0,
base_blur_mask_modifier = 0,
default_erode_mask_modifier = 0,
default_blur_mask_modifier = 0,
clip_hborder_mask_per = 0,
):
super().__init__(type=ConverterConfig.TYPE_MASKED,
predictor_func=predictor_func,
predictor_input_shape=predictor_input_shape,
)
if len(predictor_input_shape) != 3:
raise ValueError("ConverterConfigMasked: predictor_input_shape must be rank 3.")
if predictor_input_shape[0] != predictor_input_shape[1]:
raise ValueError("ConverterConfigMasked: predictor_input_shape must be a square.")
self.predictor_masked = predictor_masked
self.face_type = face_type
if self.face_type not in [FaceType.FULL, FaceType.HALF]:
raise ValueError("ConverterConfigMasked supports only full or half face masks.")
self.default_mode = default_mode
self.base_erode_mask_modifier = base_erode_mask_modifier
self.base_blur_mask_modifier = base_blur_mask_modifier
self.default_erode_mask_modifier = default_erode_mask_modifier
self.default_blur_mask_modifier = default_blur_mask_modifier
self.clip_hborder_mask_per = clip_hborder_mask_per
#default changeable params
self.mode = 'overlay'
self.masked_hist_match = True
self.hist_match_threshold = 238
self.mask_mode = 1
self.erode_mask_modifier = 0
self.blur_mask_modifier = 0
self.motion_blur_power = 0
self.output_face_scale = 0
self.color_transfer_mode = 0
self.super_resolution = False
self.color_degrade_power = 0
self.export_mask_alpha = False
self.mode_dict = {0:'original',
1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'seamless-hist-match',
6:'raw-rgb',
7:'raw-rgb-mask',
8:'raw-mask-only',
9:'raw-predicted-only'}
self.full_face_mask_mode_dict = {1:'learned',
2:'dst',
3:'FAN-prd',
4:'FAN-dst',
5:'FAN-prd*FAN-dst',
6:'learned*FAN-prd*FAN-dst'}
self.half_face_mask_mode_dict = {1:'learned',
2:'dst',
4:'FAN-dst',
7:'learned*FAN-dst'}
self.ctm_dict = { 0: "None", 1:"rct", 2:"lct" }
self.ctm_str_dict = {None:0, "rct":1, "lct": 2 }
def copy(self):
return copy.copy(self)
def set_mode (self, mode):
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
def toggle_masked_hist_match(self):
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = not self.masked_hist_match
def add_hist_match_threshold(self, diff):
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
def toggle_mask_mode(self):
if self.face_type == FaceType.FULL:
a = list( self.full_face_mask_mode_dict.keys() )
else:
a = list( self.half_face_mask_mode_dict.keys() )
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
def add_erode_mask_modifier(self, diff):
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -200, 200)
def add_blur_mask_modifier(self, diff):
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -200, 200)
def add_motion_blur_power(self, diff):
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
def add_output_face_scale(self, diff):
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
def toggle_color_transfer_mode(self):
self.color_transfer_mode = (self.color_transfer_mode+1) % 3
def toggle_super_resolution(self):
self.super_resolution = not self.super_resolution
def add_color_degrade_power(self, diff):
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
def toggle_export_mask_alpha(self):
self.export_mask_alpha = not self.export_mask_alpha
def ask_settings(self):
s = """Choose mode: \n"""
for key in self.mode_dict.keys():
s += f"""({key}) {self.mode_dict[key]}\n"""
s += f"""Default: {self.default_mode} : """
mode = io.input_int (s, self.default_mode)
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
if 'raw' not in self.mode:
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
if self.face_type == FaceType.FULL:
s = """Choose mask mode: \n"""
for key in self.full_face_mask_mode_dict.keys():
s += f"""({key}) {self.full_face_mask_mode_dict[key]}\n"""
s += f"""?:help Default: 1 : """
self.mask_mode = io.input_int (s, 1, valid_list=self.full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
else:
s = """Choose mask mode: \n"""
for key in self.half_face_mask_mode_dict.keys():
s += f"""({key}) {self.half_face_mask_mode_dict[key]}\n"""
s += f"""?:help , Default: 1 : """
self.mask_mode = io.input_int (s, 1, valid_list=self.half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
if 'raw' not in self.mode:
self.erode_mask_modifier = self.base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (self.default_erode_mask_modifier), self.default_erode_mask_modifier), -200, 200)
self.blur_mask_modifier = self.base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (self.default_blur_mask_modifier), self.default_blur_mask_modifier), -200, 200)
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power [0..100] (skip:%d) : " % (0), 0), 0, 100)
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0), -50, 50)
if 'raw' not in self.mode:
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
self.color_transfer_mode = self.ctm_str_dict[self.color_transfer_mode]
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
if 'raw' not in self.mode:
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False)
io.log_info ("")
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, ConverterConfigMasked):
return self.mode == other.mode and \
self.masked_hist_match == other.masked_hist_match and \
self.hist_match_threshold == other.hist_match_threshold and \
self.mask_mode == other.mask_mode and \
self.erode_mask_modifier == other.erode_mask_modifier and \
self.blur_mask_modifier == other.blur_mask_modifier and \
self.motion_blur_power == other.motion_blur_power and \
self.output_face_scale == other.output_face_scale and \
self.color_transfer_mode == other.color_transfer_mode and \
self.super_resolution == other.super_resolution and \
self.color_degrade_power == other.color_degrade_power and \
self.export_mask_alpha == other.export_mask_alpha
return False
def __str__(self):
r = (
"""ConverterConfig:\n"""
f"""Mode: {self.mode}\n"""
)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
if self.face_type == FaceType.FULL:
r += f"""mask_mode: { self.full_face_mask_mode_dict[self.mask_mode] }\n"""
else:
r += f"""mask_mode: { self.half_face_mask_mode_dict[self.mask_mode] }\n"""
if 'raw' not in self.mode:
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
f"""motion_blur_power: {self.motion_blur_power}\n""")
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
r += f"""color_transfer_mode: { self.ctm_dict[self.color_transfer_mode]}\n"""
r += f"""super_resolution: {self.super_resolution}\n"""
if 'raw' not in self.mode:
r += (f"""color_degrade_power: {self.color_degrade_power}\n"""
f"""export_mask_alpha: {self.export_mask_alpha}\n""")
r += "================"
return r
class ConverterConfigFaceAvatar(ConverterConfig):
def __init__(self, predictor_func=None,
predictor_input_shape=None,
temporal_face_count=0
):
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR,
predictor_func=predictor_func,
predictor_input_shape=predictor_input_shape
)
self.temporal_face_count = temporal_face_count
#changeable params
self.add_source_image = False
def copy(self):
return copy.copy(self)
#override
def ask_settings(self):
self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.")
def toggle_add_source_image(self):
self.add_source_image = not self.add_source_image
#override
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, ConverterConfigFaceAvatar):
return self.add_source_image == other.add_source_image
return False
#override
def __str__(self):
return ("ConverterConfig: \n"
f"add_source_image : {self.add_source_image}\n"
"================"
)