mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-08 05:51:40 -07:00
SAEHD: added new option GAN power 0.0 .. 10.0 Train the network in Generative Adversarial manner. Forces the neural network to learn small details of the face. You can enable/disable this option at any time, but better to enable it when the network is trained enough. Typical value is 1.0 GAN power with pretrain mode will not work. Example of enabling GAN on 81k iters +5k iters https://i.imgur.com/OdXHLhU.jpg https://i.imgur.com/CYAJmJx.jpg dfhd: default Decoder dimensions are now 48 the preview for 256 res is now correctly displayed fixed model naming/renaming/removing Improvements for those involved in post-processing in AfterEffects: Codec is reverted back to x264 in order to properly use in AfterEffects and video players. Merger now always outputs the mask to workspace\data_dst\merged_mask removed raw modes except raw-rgb raw-rgb mode now outputs selected face mask_mode (before square mask) 'export alpha mask' button is replaced by 'show alpha mask'. You can view the alpha mask without recompute the frames. 8) 'merged *.bat' now also output 'result_mask.' video file. 8) 'merged lossless' now uses x264 lossless codec (before PNG codec) result_mask video file is always lossless. Thus you can use result_mask video file as mask layer in the AfterEffects.
337 lines
No EOL
18 KiB
Python
337 lines
No EOL
18 KiB
Python
import traceback
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core import imagelib
|
|
from facelib import FaceType, LandmarksProcessor
|
|
from core.interact import interact as io
|
|
from core.cv2ex import *
|
|
|
|
def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
|
|
|
if cfg.mode == 'original':
|
|
return img_bgr, img_face_mask_a
|
|
|
|
out_img = img_bgr.copy()
|
|
out_merging_mask = None
|
|
|
|
output_size = predictor_input_shape[0]
|
|
if cfg.super_resolution_mode != 0:
|
|
output_size *= 4
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
|
|
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
|
|
|
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
|
|
|
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)
|
|
|
|
predictor_input_bgr = cv2.resize (dst_face_bgr, predictor_input_shape[0:2] )
|
|
|
|
predicted = predictor_func (predictor_input_bgr)
|
|
if isinstance(predicted, tuple):
|
|
#merger return bgr,mask
|
|
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
|
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
|
predictor_masked = True
|
|
else:
|
|
#merger return bgr only, using dst mask
|
|
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
|
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, predictor_input_shape[0:2] )
|
|
predictor_masked = False
|
|
|
|
if cfg.super_resolution_mode:
|
|
prd_face_bgr = cfg.superres_func(cfg.super_resolution_mode, prd_face_bgr)
|
|
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
|
|
|
|
if predictor_masked:
|
|
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
|
else:
|
|
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode == 2: #dst
|
|
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
|
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 8:
|
|
|
|
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
|
|
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (cfg.fanseg_input_size,)*2 )
|
|
prd_face_fanseg_mask = cfg.fanseg_extract_func(FaceType.FULL, prd_face_fanseg_bgr)
|
|
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:
|
|
|
|
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.FULL)
|
|
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
dst_face_fanseg_mask = cfg.fanseg_extract_func( FaceType.FULL, dst_face_fanseg_bgr )
|
|
|
|
if cfg.face_type == FaceType.FULL:
|
|
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
|
else:
|
|
face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=cfg.face_type)
|
|
|
|
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
|
|
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, face_fanseg_mat, invert=True )
|
|
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
|
|
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
|
|
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode == 3: #FAN-prd
|
|
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
|
|
elif cfg.mask_mode == 4: #FAN-dst
|
|
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 5:
|
|
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 6:
|
|
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 7:
|
|
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
|
#elif cfg.mask_mode == 8: #FANCHQ-dst
|
|
# prd_face_mask_a_0 = FANCHQ_dst_face_mask_a_0
|
|
|
|
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
|
|
|
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
|
|
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
|
|
|
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
|
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
|
|
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
|
|
|
|
if 'raw' in cfg.mode:
|
|
if cfg.mode == 'raw-rgb':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
out_merging_mask = img_face_mask_aaa
|
|
|
|
out_img = np.clip (out_img, 0.0, 1.0 )
|
|
else:
|
|
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
|
ar = []
|
|
for i in range(1, 10):
|
|
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
|
|
if maxregion.size != 0:
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
lenx = maxx - minx
|
|
leny = maxy - miny
|
|
if min(lenx,leny) >= 4:
|
|
ar += [ [ lenx, leny] ]
|
|
|
|
if len(ar) > 0:
|
|
lenx, leny = np.mean ( ar, axis=0 )
|
|
lowest_len = min (lenx, leny)
|
|
|
|
if cfg.erode_mask_modifier != 0:
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*cfg.erode_mask_modifier )
|
|
if ero > 0:
|
|
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
if cfg.clip_hborder_mask_per > 0: #clip hborder before blur
|
|
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
|
|
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * cfg.clip_hborder_mask_per )
|
|
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
|
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
|
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
|
|
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
|
|
|
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
|
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
|
img_face_mask_aaa *= img_prd_hborder_rect_mask_a
|
|
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
|
|
|
if cfg.blur_mask_modifier > 0:
|
|
blur = int( lowest_len * 0.10 * 0.01*cfg.blur_mask_modifier )
|
|
if blur > 0:
|
|
img_face_mask_aaa = cv2.blur(img_face_mask_aaa, (blur, blur) )
|
|
|
|
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
|
|
|
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
|
if cfg.color_transfer_mode == 1: #rct
|
|
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*255, 0, 255).astype(np.uint8),
|
|
np.clip( dst_face_bgr*255, 0, 255).astype(np.uint8),
|
|
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
|
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 2: #lct
|
|
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 3: #mkl
|
|
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 4: #mkl-m
|
|
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 5: #idt
|
|
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 6: #idt-m
|
|
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 7: #sot-m
|
|
prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
prd_face_bgr = np.clip (prd_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 8: #mix-m
|
|
prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
|
|
if cfg.mode == 'hist-match-bw':
|
|
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
|
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
|
|
|
if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
|
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
if cfg.masked_hist_match:
|
|
hist_mask_a *= prd_face_mask_a
|
|
|
|
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
hist_match_1 = prd_face_bgr*hist_mask_a + white
|
|
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
|
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold ).astype(dtype=np.float32)
|
|
|
|
if cfg.mode == 'hist-match-bw':
|
|
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
|
|
|
if 'seamless' in cfg.mode:
|
|
#mask used for cv2.seamlessClone
|
|
img_face_mask_a = img_face_mask_aaa[...,0:1]
|
|
|
|
img_face_seamless_mask_a = None
|
|
for i in range(1,10):
|
|
a = img_face_mask_a > i / 10.0
|
|
if len(np.argwhere(a)) == 0:
|
|
continue
|
|
img_face_seamless_mask_a = img_face_mask_a.copy()
|
|
img_face_seamless_mask_a[a] = 1.0
|
|
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
|
break
|
|
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
|
|
out_img = np.clip(out_img, 0.0, 1.0)
|
|
|
|
if 'seamless' in cfg.mode:
|
|
try:
|
|
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
|
|
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
|
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
|
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
|
out_img = out_img.astype(dtype=np.float32) / 255.0
|
|
except Exception as e:
|
|
#seamlessClone may fail in some cases
|
|
e_str = traceback.format_exc()
|
|
|
|
if 'MemoryError' in e_str:
|
|
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
|
else:
|
|
print ("Seamless fail: " + e_str)
|
|
|
|
|
|
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
|
|
|
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
|
|
|
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
|
|
if cfg.color_transfer_mode == 1:
|
|
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
|
|
|
|
out_face_bgr = imagelib.reinhard_color_transfer ( (out_face_bgr*255).astype(np.uint8),
|
|
(dst_face_bgr*255).astype(np.uint8),
|
|
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
|
|
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 2: #lct
|
|
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 3: #mkl
|
|
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 4: #mkl-m
|
|
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 5: #idt
|
|
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 6: #idt-m
|
|
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
elif cfg.color_transfer_mode == 7: #sot-m
|
|
out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
out_face_bgr = np.clip (out_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 8: #mix-m
|
|
out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
|
|
|
|
if cfg.mode == 'seamless-hist-match':
|
|
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
|
|
|
cfg_mp = cfg.motion_blur_power / 100.0
|
|
if cfg_mp != 0:
|
|
k_size = int(frame_info.motion_power*cfg_mp)
|
|
if k_size >= 1:
|
|
k_size = np.clip (k_size+1, 2, 50)
|
|
if cfg.super_resolution_mode:
|
|
k_size *= 2
|
|
out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
|
|
|
|
if cfg.blursharpen_amount != 0:
|
|
out_face_bgr = cfg.blursharpen_func ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
|
|
|
|
|
|
if cfg.image_denoise_power != 0:
|
|
n = cfg.image_denoise_power
|
|
while n > 0:
|
|
img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
|
|
if int(n / 100) != 0:
|
|
img_bgr = img_bgr_denoised
|
|
else:
|
|
pass_power = (n % 100) / 100.0
|
|
img_bgr = img_bgr*(1.0-pass_power)+img_bgr_denoised*pass_power
|
|
n = max(n-10,0)
|
|
|
|
if cfg.bicubic_degrade_power != 0:
|
|
p = 1.0 - cfg.bicubic_degrade_power / 101.0
|
|
img_bgr_downscaled = cv2.resize (img_bgr, ( int(img_size[0]*p), int(img_size[1]*p ) ), cv2.INTER_CUBIC)
|
|
img_bgr = cv2.resize (img_bgr_downscaled, img_size, cv2.INTER_CUBIC)
|
|
|
|
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
|
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
|
|
|
if cfg.color_degrade_power != 0:
|
|
out_img_reduced = imagelib.reduce_colors(out_img, 256)
|
|
if cfg.color_degrade_power == 100:
|
|
out_img = out_img_reduced
|
|
else:
|
|
alpha = cfg.color_degrade_power / 100.0
|
|
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
|
|
|
out_merging_mask = img_face_mask_aaa
|
|
|
|
return out_img, out_merging_mask[...,0:1]
|
|
|
|
|
|
def MergeMasked (predictor_func, predictor_input_shape, cfg, frame_info):
|
|
img_bgr_uint8 = cv2_imread(frame_info.filepath)
|
|
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
|
|
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
|
|
|
|
outs = []
|
|
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
|
out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
|
outs += [ (out_img, out_img_merging_mask) ]
|
|
|
|
#Combining multiple face outputs
|
|
final_img = None
|
|
final_mask = None
|
|
for img, merging_mask in outs:
|
|
h,w,c = img.shape
|
|
|
|
if final_img is None:
|
|
final_img = img
|
|
final_mask = merging_mask
|
|
else:
|
|
final_img = final_img*(1-merging_mask) + img*merging_mask
|
|
final_mask = np.clip (final_mask + merging_mask, 0, 1 )
|
|
|
|
final_img = np.concatenate ( [final_img, final_mask], -1)
|
|
|
|
return (final_img*255).astype(np.uint8) |