mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
187 lines
8.4 KiB
Python
187 lines
8.4 KiB
Python
from models import ModelBase
|
|
from models import TrainingDataType
|
|
import numpy as np
|
|
|
|
from nnlib import DSSIMMaskLossClass
|
|
from nnlib import conv
|
|
from nnlib import upscale
|
|
from facelib import FaceType
|
|
|
|
import cv2
|
|
|
|
class Model(ModelBase):
|
|
|
|
encoderH5 = 'encoder.h5'
|
|
decoder_srcH5 = 'decoder_src.h5'
|
|
decoder_dstH5 = 'decoder_dst.h5'
|
|
|
|
#override
|
|
def onInitialize(self, **in_options):
|
|
tf = self.tf
|
|
keras = self.keras
|
|
K = keras.backend
|
|
self.set_vram_batch_requirements( {2.5:2,3:2,4:2,4:4,5:8,6:8,7:16,8:16,9:24,10:24,11:32,12:32,13:48} )
|
|
|
|
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build(self.created_vram_gb)
|
|
if not self.is_first_run():
|
|
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
|
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
|
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
|
|
|
input_src_bgr = self.keras.layers.Input(bgr_shape)
|
|
input_src_mask = self.keras.layers.Input(mask_shape)
|
|
input_dst_bgr = self.keras.layers.Input(bgr_shape)
|
|
input_dst_mask = self.keras.layers.Input(mask_shape)
|
|
|
|
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
|
|
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
|
|
|
|
self.ae = self.keras.models.Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
|
|
|
|
if self.is_training_mode:
|
|
self.ae, = self.to_multi_gpu_model_if_possible ( [self.ae,] )
|
|
|
|
self.ae.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
|
|
loss=[ DSSIMMaskLossClass(self.tf)([input_src_mask]), 'mae', DSSIMMaskLossClass(self.tf)([input_dst_mask]), 'mae' ] )
|
|
|
|
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
|
|
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
|
|
|
if self.is_training_mode:
|
|
from models import TrainingDataGenerator
|
|
f = TrainingDataGenerator.SampleTypeFlags
|
|
self.set_training_data_generators ([
|
|
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True ),
|
|
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True )
|
|
])
|
|
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
|
|
[self.decoder_src, self.get_strpath_storage_for_file(self.decoder_srcH5)],
|
|
[self.decoder_dst, self.get_strpath_storage_for_file(self.decoder_dstH5)]])
|
|
|
|
#override
|
|
def onTrainOneEpoch(self, sample):
|
|
warped_src, target_src, target_src_mask = sample[0]
|
|
warped_dst, target_dst, target_dst_mask = sample[1]
|
|
|
|
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_mask, warped_dst, target_dst_mask], [target_src, target_src_mask, target_dst, target_dst_mask] )
|
|
|
|
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][1][0:4] #first 4 samples
|
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
|
test_B = sample[1][1][0:4]
|
|
test_B_m = sample[1][2][0:4]
|
|
|
|
AA, mAA = self.src_view([test_A])
|
|
AB, mAB = self.src_view([test_B])
|
|
BB, mBB = self.dst_view([test_B])
|
|
|
|
mAA = np.repeat ( mAA, (3,), -1)
|
|
mAB = np.repeat ( mAB, (3,), -1)
|
|
mBB = np.repeat ( mBB, (3,), -1)
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
st.append ( np.concatenate ( (
|
|
test_A[i,:,:,0:3],
|
|
AA[i],
|
|
#mAA[i],
|
|
test_B[i,:,:,0:3],
|
|
BB[i],
|
|
#mBB[i],
|
|
AB[i],
|
|
#mAB[i]
|
|
), axis=1) )
|
|
|
|
return [ ('H128', np.concatenate ( st, axis=0 ) ) ]
|
|
|
|
def predictor_func (self, face):
|
|
face_128_bgr = face[...,0:3]
|
|
face_128_mask = np.expand_dims(face[...,3],-1)
|
|
|
|
x, mx = self.src_view ( [ np.expand_dims(face_128_bgr,0) ] )
|
|
x, mx = x[0], mx[0]
|
|
|
|
return np.concatenate ( (x,mx), -1 )
|
|
|
|
#override
|
|
def get_converter(self, **in_options):
|
|
from models import ConverterMasked
|
|
|
|
if 'masked_hist_match' not in in_options.keys() or in_options['masked_hist_match'] is None:
|
|
in_options['masked_hist_match'] = True
|
|
|
|
if 'erode_mask_modifier' not in in_options.keys():
|
|
in_options['erode_mask_modifier'] = 0
|
|
in_options['erode_mask_modifier'] += 100
|
|
|
|
if 'blur_mask_modifier' not in in_options.keys():
|
|
in_options['blur_mask_modifier'] = 0
|
|
in_options['blur_mask_modifier'] += 100
|
|
|
|
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.HALF, **in_options)
|
|
|
|
def Build(self, created_vram_gb):
|
|
bgr_shape = (128, 128, 3)
|
|
mask_shape = (128, 128, 1)
|
|
|
|
def Encoder(input_shape):
|
|
input_layer = self.keras.layers.Input(input_shape)
|
|
x = input_layer
|
|
if created_vram_gb >= 5:
|
|
x = conv(self.keras, x, 128)
|
|
x = conv(self.keras, x, 256)
|
|
x = conv(self.keras, x, 512)
|
|
x = conv(self.keras, x, 1024)
|
|
x = self.keras.layers.Dense(512)(self.keras.layers.Flatten()(x))
|
|
x = self.keras.layers.Dense(8 * 8 * 512)(x)
|
|
x = self.keras.layers.Reshape((8, 8, 512))(x)
|
|
x = upscale(self.keras, x, 512)
|
|
else:
|
|
x = conv(self.keras, x, 128)
|
|
x = conv(self.keras, x, 256)
|
|
x = conv(self.keras, x, 512)
|
|
x = conv(self.keras, x, 1024)
|
|
x = self.keras.layers.Dense(256)(self.keras.layers.Flatten()(x))
|
|
x = self.keras.layers.Dense(8 * 8 * 256)(x)
|
|
x = self.keras.layers.Reshape((8, 8, 256))(x)
|
|
x = upscale(self.keras, x, 256)
|
|
|
|
return self.keras.models.Model(input_layer, x)
|
|
|
|
def Decoder():
|
|
if created_vram_gb >= 5:
|
|
input_ = self.keras.layers.Input(shape=(16, 16, 512))
|
|
x = input_
|
|
x = upscale(self.keras, x, 512)
|
|
x = upscale(self.keras, x, 256)
|
|
x = upscale(self.keras, x, 128)
|
|
|
|
y = input_ #mask decoder
|
|
y = upscale(self.keras, y, 512)
|
|
y = upscale(self.keras, y, 256)
|
|
y = upscale(self.keras, y, 128)
|
|
else:
|
|
input_ = self.keras.layers.Input(shape=(16, 16, 256))
|
|
x = input_
|
|
x = upscale(self.keras, x, 256)
|
|
x = upscale(self.keras, x, 128)
|
|
x = upscale(self.keras, x, 64)
|
|
|
|
y = input_ #mask decoder
|
|
y = upscale(self.keras, y, 256)
|
|
y = upscale(self.keras, y, 128)
|
|
y = upscale(self.keras, y, 64)
|
|
|
|
x = self.keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
y = self.keras.layers.convolutional.Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
|
|
|
|
|
|
return self.keras.models.Model(input_, [x,y])
|
|
|
|
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()
|