mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
758 lines
No EOL
39 KiB
Python
758 lines
No EOL
39 KiB
Python
import numpy as np
|
|
|
|
from nnlib import nnlib
|
|
from models import ModelBase
|
|
from facelib import FaceType
|
|
from samples import *
|
|
from interact import interact as io
|
|
|
|
#SAE - Styled AutoEncoder
|
|
class SAEModel(ModelBase):
|
|
|
|
encoderH5 = 'encoder.h5'
|
|
inter_BH5 = 'inter_B.h5'
|
|
inter_ABH5 = 'inter_AB.h5'
|
|
decoderH5 = 'decoder.h5'
|
|
decodermH5 = 'decoderm.h5'
|
|
|
|
decoder_srcH5 = 'decoder_src.h5'
|
|
decoder_srcmH5 = 'decoder_srcm.h5'
|
|
decoder_dstH5 = 'decoder_dst.h5'
|
|
decoder_dstmH5 = 'decoder_dstm.h5'
|
|
|
|
#override
|
|
def onInitializeOptions(self, is_first_run, ask_override):
|
|
yn_str = {True:'y',False:'n'}
|
|
|
|
default_resolution = 128
|
|
default_archi = 'df'
|
|
default_face_type = 'f'
|
|
|
|
if is_first_run:
|
|
resolution = io.input_int("Resolution ( 64-256 ?:help skip:128) : ", default_resolution, help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
|
|
resolution = np.clip (resolution, 64, 256)
|
|
while np.modf(resolution / 16)[0] != 0.0:
|
|
resolution -= 1
|
|
self.options['resolution'] = resolution
|
|
|
|
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="Half face has better resolution, but covers less area of cheeks.").lower()
|
|
self.options['learn_mask'] = io.input_bool ("Learn mask? (y/n, ?:help skip:y) : ", True, help_message="Learning mask can help model to recognize face directions. Learn without mask can reduce model size, in this case converter forced to use 'not predicted mask' that is not smooth as predicted. Model with style values can be learned without mask and produce same quality result.")
|
|
else:
|
|
self.options['resolution'] = self.options.get('resolution', default_resolution)
|
|
self.options['face_type'] = self.options.get('face_type', default_face_type)
|
|
self.options['learn_mask'] = self.options.get('learn_mask', True)
|
|
|
|
if is_first_run or ask_override:
|
|
def_simple_optimizer = self.options.get('simple_optimizer', False)
|
|
self.options['simple_optimizer'] = io.input_bool ("Use simple optimizer? (y/n, ?:help skip:%s) : " % ( yn_str[def_simple_optimizer] ), def_simple_optimizer, help_message="Simple optimizer allows you to train bigger network or more batch size, sacrificing training accuracy.")
|
|
else:
|
|
self.options['simple_optimizer'] = self.options.get('simple_optimizer', False)
|
|
|
|
if is_first_run:
|
|
self.options['archi'] = io.input_str ("AE architecture (df, liae, vg ?:help skip:%s) : " % (default_archi) , default_archi, ['df','liae','vg'], help_message="'df' keeps faces more natural. 'liae' can fix overly different face shapes. 'vg' - currently testing.").lower()
|
|
else:
|
|
self.options['archi'] = self.options.get('archi', default_archi)
|
|
|
|
default_ae_dims = 256 if self.options['archi'] == 'liae' else 512
|
|
default_ed_ch_dims = 42
|
|
if is_first_run:
|
|
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dims (32-1024 ?:help skip:%d) : " % (default_ae_dims) , default_ae_dims, help_message="More dims are better, but requires more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
|
self.options['ed_ch_dims'] = np.clip ( io.input_int("Encoder/Decoder dims per channel (21-85 ?:help skip:%d) : " % (default_ed_ch_dims) , default_ed_ch_dims, help_message="More dims are better, but requires more VRAM. You can fine-tune model size to fit your GPU." ), 21, 85 )
|
|
else:
|
|
self.options['ae_dims'] = self.options.get('ae_dims', default_ae_dims)
|
|
self.options['ed_ch_dims'] = self.options.get('ed_ch_dims', default_ed_ch_dims)
|
|
|
|
if is_first_run:
|
|
self.options['lighter_encoder'] = io.input_bool ("Use lightweight encoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight encoder is 35% faster, requires less VRAM, but sacrificing overall quality.")
|
|
|
|
if self.options['archi'] != 'vg':
|
|
self.options['multiscale_decoder'] = io.input_bool ("Use multiscale decoder? (y/n, ?:help skip:n) : ", False, help_message="Multiscale decoder helps to get better details.")
|
|
else:
|
|
self.options['lighter_encoder'] = self.options.get('lighter_encoder', False)
|
|
|
|
if self.options['archi'] != 'vg':
|
|
self.options['multiscale_decoder'] = self.options.get('multiscale_decoder', False)
|
|
|
|
default_face_style_power = 0.0
|
|
default_bg_style_power = 0.0
|
|
if is_first_run or ask_override:
|
|
def_pixel_loss = self.options.get('pixel_loss', False)
|
|
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: %s ) : " % (yn_str[def_pixel_loss]), def_pixel_loss, help_message="Default DSSIM loss good for initial understanding structure of faces. Use pixel loss after 15-25k iters to enhance fine details and decrease face jitter.")
|
|
|
|
default_face_style_power = default_face_style_power if is_first_run else self.options.get('face_style_power', default_face_style_power)
|
|
self.options['face_style_power'] = np.clip ( io.input_number("Face style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_face_style_power), default_face_style_power,
|
|
help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.1 value and check history changes."), 0.0, 100.0 )
|
|
|
|
default_bg_style_power = default_bg_style_power if is_first_run else self.options.get('bg_style_power', default_bg_style_power)
|
|
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_bg_style_power), default_bg_style_power,
|
|
help_message="Learn to transfer image around face. This can make face more like dst."), 0.0, 100.0 )
|
|
else:
|
|
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
|
|
self.options['face_style_power'] = self.options.get('face_style_power', default_face_style_power)
|
|
self.options['bg_style_power'] = self.options.get('bg_style_power', default_bg_style_power)
|
|
|
|
#override
|
|
def onInitialize(self):
|
|
exec(nnlib.import_all(), locals(), globals())
|
|
SAEModel.initialize_nn_functions()
|
|
self.set_vram_batch_requirements({1.5:4})
|
|
|
|
resolution = self.options['resolution']
|
|
ae_dims = self.options['ae_dims']
|
|
ed_ch_dims = self.options['ed_ch_dims']
|
|
bgr_shape = (resolution, resolution, 3)
|
|
mask_shape = (resolution, resolution, 1)
|
|
|
|
self.ms_count = ms_count = 3 if (self.options['archi'] != 'vg' and self.options['multiscale_decoder']) else 1
|
|
|
|
masked_training = True
|
|
|
|
warped_src = Input(bgr_shape)
|
|
target_src = Input(bgr_shape)
|
|
target_srcm = Input(mask_shape)
|
|
|
|
warped_dst = Input(bgr_shape)
|
|
target_dst = Input(bgr_shape)
|
|
target_dstm = Input(mask_shape)
|
|
|
|
target_src_ar = [ Input ( ( bgr_shape[0] // (2**i) ,)*2 + (bgr_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
|
|
target_srcm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
|
|
target_dst_ar = [ Input ( ( bgr_shape[0] // (2**i) ,)*2 + (bgr_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
|
|
target_dstm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
|
|
|
|
|
|
weights_to_load = []
|
|
if self.options['archi'] == 'liae':
|
|
self.encoder = modelify(SAEModel.LIAEEncFlow(resolution, self.options['lighter_encoder'], ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
|
|
|
|
enc_output_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
|
|
|
|
self.inter_B = modelify(SAEModel.LIAEInterFlow(resolution, ae_dims=ae_dims)) (enc_output_Inputs)
|
|
self.inter_AB = modelify(SAEModel.LIAEInterFlow(resolution, ae_dims=ae_dims)) (enc_output_Inputs)
|
|
|
|
inter_output_Inputs = [ Input( np.array(K.int_shape(x)[1:])*(1,1,2) ) for x in self.inter_B.outputs ]
|
|
|
|
self.decoder = modelify(SAEModel.LIAEDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2, multiscale_count=self.ms_count )) (inter_output_Inputs)
|
|
|
|
if self.options['learn_mask']:
|
|
self.decoderm = modelify(SAEModel.LIAEDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (inter_output_Inputs)
|
|
|
|
if not self.is_first_run():
|
|
weights_to_load += [ [self.encoder , 'encoder.h5'],
|
|
[self.inter_B , 'inter_B.h5'],
|
|
[self.inter_AB, 'inter_AB.h5'],
|
|
[self.decoder , 'decoder.h5'],
|
|
]
|
|
if self.options['learn_mask']:
|
|
weights_to_load += [ [self.decoderm, 'decoderm.h5'] ]
|
|
|
|
warped_src_code = self.encoder (warped_src)
|
|
warped_src_inter_AB_code = self.inter_AB (warped_src_code)
|
|
warped_src_inter_code = Concatenate()([warped_src_inter_AB_code,warped_src_inter_AB_code])
|
|
|
|
warped_dst_code = self.encoder (warped_dst)
|
|
warped_dst_inter_B_code = self.inter_B (warped_dst_code)
|
|
warped_dst_inter_AB_code = self.inter_AB (warped_dst_code)
|
|
warped_dst_inter_code = Concatenate()([warped_dst_inter_B_code,warped_dst_inter_AB_code])
|
|
|
|
warped_src_dst_inter_code = Concatenate()([warped_dst_inter_AB_code,warped_dst_inter_AB_code])
|
|
|
|
pred_src_src = self.decoder(warped_src_inter_code)
|
|
pred_dst_dst = self.decoder(warped_dst_inter_code)
|
|
pred_src_dst = self.decoder(warped_src_dst_inter_code)
|
|
|
|
if self.options['learn_mask']:
|
|
pred_src_srcm = self.decoderm(warped_src_inter_code)
|
|
pred_dst_dstm = self.decoderm(warped_dst_inter_code)
|
|
pred_src_dstm = self.decoderm(warped_src_dst_inter_code)
|
|
|
|
elif self.options['archi'] == 'df':
|
|
self.encoder = modelify(SAEModel.DFEncFlow(resolution, self.options['lighter_encoder'], ae_dims=ae_dims, ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
|
|
|
|
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
|
|
|
|
self.decoder_src = modelify(SAEModel.DFDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2, multiscale_count=self.ms_count )) (dec_Inputs)
|
|
self.decoder_dst = modelify(SAEModel.DFDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2, multiscale_count=self.ms_count )) (dec_Inputs)
|
|
|
|
if self.options['learn_mask']:
|
|
self.decoder_srcm = modelify(SAEModel.DFDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
|
|
self.decoder_dstm = modelify(SAEModel.DFDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
|
|
|
|
if not self.is_first_run():
|
|
weights_to_load += [ [self.encoder , 'encoder.h5'],
|
|
[self.decoder_src, 'decoder_src.h5'],
|
|
[self.decoder_dst, 'decoder_dst.h5']
|
|
]
|
|
if self.options['learn_mask']:
|
|
weights_to_load += [ [self.decoder_srcm, 'decoder_srcm.h5'],
|
|
[self.decoder_dstm, 'decoder_dstm.h5'],
|
|
]
|
|
|
|
warped_src_code = self.encoder (warped_src)
|
|
warped_dst_code = self.encoder (warped_dst)
|
|
pred_src_src = self.decoder_src(warped_src_code)
|
|
pred_dst_dst = self.decoder_dst(warped_dst_code)
|
|
pred_src_dst = self.decoder_src(warped_dst_code)
|
|
|
|
if self.options['learn_mask']:
|
|
pred_src_srcm = self.decoder_srcm(warped_src_code)
|
|
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
|
|
pred_src_dstm = self.decoder_srcm(warped_dst_code)
|
|
|
|
elif self.options['archi'] == 'vg':
|
|
self.encoder = modelify(SAEModel.VGEncFlow(resolution, self.options['lighter_encoder'], ae_dims=ae_dims, ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
|
|
|
|
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
|
|
|
|
self.decoder_src = modelify(SAEModel.VGDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2 )) (dec_Inputs)
|
|
self.decoder_dst = modelify(SAEModel.VGDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2 )) (dec_Inputs)
|
|
|
|
if self.options['learn_mask']:
|
|
self.decoder_srcm = modelify(SAEModel.VGDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
|
|
self.decoder_dstm = modelify(SAEModel.VGDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
|
|
|
|
if not self.is_first_run():
|
|
weights_to_load += [ [self.encoder , 'encoder.h5'],
|
|
[self.decoder_src, 'decoder_src.h5'],
|
|
[self.decoder_dst, 'decoder_dst.h5']
|
|
]
|
|
if self.options['learn_mask']:
|
|
weights_to_load += [ [self.decoder_srcm, 'decoder_srcm.h5'],
|
|
[self.decoder_dstm, 'decoder_dstm.h5'],
|
|
]
|
|
|
|
warped_src_code = self.encoder (warped_src)
|
|
warped_dst_code = self.encoder (warped_dst)
|
|
pred_src_src = self.decoder_src(warped_src_code)
|
|
pred_dst_dst = self.decoder_dst(warped_dst_code)
|
|
pred_src_dst = self.decoder_src(warped_dst_code)
|
|
|
|
|
|
if self.options['learn_mask']:
|
|
pred_src_srcm = self.decoder_srcm(warped_src_code)
|
|
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
|
|
pred_src_dstm = self.decoder_srcm(warped_dst_code)
|
|
|
|
pred_src_src, pred_dst_dst, pred_src_dst, = [ [x] if type(x) != list else x for x in [pred_src_src, pred_dst_dst, pred_src_dst, ] ]
|
|
|
|
if self.options['learn_mask']:
|
|
pred_src_srcm, pred_dst_dstm, pred_src_dstm = [ [x] if type(x) != list else x for x in [pred_src_srcm, pred_dst_dstm, pred_src_dstm] ]
|
|
|
|
target_srcm_blurred_ar = [ gaussian_blur( max(1, K.int_shape(x)[1] // 32) )(x) for x in target_srcm_ar]
|
|
target_srcm_sigm_ar = [ x / 2.0 + 0.5 for x in target_srcm_blurred_ar]
|
|
target_srcm_anti_sigm_ar = [ 1.0 - x for x in target_srcm_sigm_ar]
|
|
|
|
target_dstm_blurred_ar = [ gaussian_blur( max(1, K.int_shape(x)[1] // 32) )(x) for x in target_dstm_ar]
|
|
target_dstm_sigm_ar = [ x / 2.0 + 0.5 for x in target_dstm_blurred_ar]
|
|
target_dstm_anti_sigm_ar = [ 1.0 - x for x in target_dstm_sigm_ar]
|
|
|
|
target_src_sigm_ar = [ x + 1 for x in target_src_ar]
|
|
target_dst_sigm_ar = [ x + 1 for x in target_dst_ar]
|
|
|
|
pred_src_src_sigm_ar = [ x + 1 for x in pred_src_src]
|
|
pred_dst_dst_sigm_ar = [ x + 1 for x in pred_dst_dst]
|
|
pred_src_dst_sigm_ar = [ x + 1 for x in pred_src_dst]
|
|
|
|
target_src_masked_ar = [ target_src_sigm_ar[i]*target_srcm_sigm_ar[i] for i in range(len(target_src_sigm_ar))]
|
|
target_dst_masked_ar = [ target_dst_sigm_ar[i]*target_dstm_sigm_ar[i] for i in range(len(target_dst_sigm_ar))]
|
|
target_dst_anti_masked_ar = [ target_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(target_dst_sigm_ar))]
|
|
|
|
pred_src_src_masked_ar = [ pred_src_src_sigm_ar[i] * target_srcm_sigm_ar[i] for i in range(len(pred_src_src_sigm_ar))]
|
|
pred_dst_dst_masked_ar = [ pred_dst_dst_sigm_ar[i] * target_dstm_sigm_ar[i] for i in range(len(pred_dst_dst_sigm_ar))]
|
|
|
|
target_src_masked_ar_opt = target_src_masked_ar if masked_training else target_src_sigm_ar
|
|
target_dst_masked_ar_opt = target_dst_masked_ar if masked_training else target_dst_sigm_ar
|
|
|
|
pred_src_src_masked_ar_opt = pred_src_src_masked_ar if masked_training else pred_src_src_sigm_ar
|
|
pred_dst_dst_masked_ar_opt = pred_dst_dst_masked_ar if masked_training else pred_dst_dst_sigm_ar
|
|
|
|
psd_target_dst_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
|
|
psd_target_dst_anti_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
|
|
|
|
if self.is_training_mode:
|
|
if self.options['simple_optimizer']:
|
|
self.src_dst_opt = DFLOptimizer(lr=5e-5)
|
|
self.src_dst_mask_opt = DFLOptimizer(lr=5e-5)
|
|
else:
|
|
self.src_dst_opt = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
|
|
self.src_dst_mask_opt = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
|
|
|
|
if self.options['archi'] == 'liae':
|
|
src_dst_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
|
|
if self.options['learn_mask']:
|
|
src_dst_mask_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoderm.trainable_weights
|
|
else:
|
|
src_dst_loss_train_weights = self.encoder.trainable_weights + self.decoder_src.trainable_weights + self.decoder_dst.trainable_weights
|
|
if self.options['learn_mask']:
|
|
src_dst_mask_loss_train_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights + self.decoder_dstm.trainable_weights
|
|
|
|
if not self.options['pixel_loss']:
|
|
src_loss_batch = sum([ ( 100*K.square( dssim(kernel_size=int(resolution/11.6),max_value=2.0)( target_src_masked_ar_opt[i], pred_src_src_masked_ar_opt[i] ) )) for i in range(len(target_src_masked_ar_opt)) ])
|
|
else:
|
|
src_loss_batch = sum([ K.mean ( 100*K.square( target_src_masked_ar_opt[i] - pred_src_src_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_src_masked_ar_opt)) ])
|
|
|
|
src_loss = K.mean(src_loss_batch)
|
|
|
|
face_style_power = self.options['face_style_power'] / 100.0
|
|
|
|
if face_style_power != 0:
|
|
src_loss += style_loss(gaussian_blur_radius=resolution//16, loss_weight=face_style_power, wnd_size=0)( psd_target_dst_masked_ar[-1], target_dst_masked_ar[-1] )
|
|
|
|
bg_style_power = self.options['bg_style_power'] / 100.0
|
|
if bg_style_power != 0:
|
|
if not self.options['pixel_loss']:
|
|
bg_loss = K.mean( (100*bg_style_power)*K.square(dssim(kernel_size=int(resolution/11.6),max_value=2.0)( psd_target_dst_anti_masked_ar[-1], target_dst_anti_masked_ar[-1] )))
|
|
else:
|
|
bg_loss = K.mean( (100*bg_style_power)*K.square( psd_target_dst_anti_masked_ar[-1] - target_dst_anti_masked_ar[-1] ))
|
|
src_loss += bg_loss
|
|
|
|
if not self.options['pixel_loss']:
|
|
dst_loss_batch = sum([ ( 100*K.square(dssim(kernel_size=int(resolution/11.6),max_value=2.0)( target_dst_masked_ar_opt[i], pred_dst_dst_masked_ar_opt[i] ) )) for i in range(len(target_dst_masked_ar_opt)) ])
|
|
else:
|
|
dst_loss_batch = sum([ K.mean ( 100*K.square( target_dst_masked_ar_opt[i] - pred_dst_dst_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_dst_masked_ar_opt)) ])
|
|
|
|
dst_loss = K.mean(dst_loss_batch)
|
|
|
|
feed = [warped_src, warped_dst]
|
|
feed += target_src_ar[::-1]
|
|
feed += target_srcm_ar[::-1]
|
|
feed += target_dst_ar[::-1]
|
|
feed += target_dstm_ar[::-1]
|
|
|
|
self.src_dst_train = K.function (feed,[src_loss,dst_loss], self.src_dst_opt.get_updates(src_loss+dst_loss, src_dst_loss_train_weights) )
|
|
|
|
if self.options['learn_mask']:
|
|
src_mask_loss = sum([ K.mean(K.square(target_srcm_ar[-1]-pred_src_srcm[-1])) for i in range(len(target_srcm_ar)) ])
|
|
dst_mask_loss = sum([ K.mean(K.square(target_dstm_ar[-1]-pred_dst_dstm[-1])) for i in range(len(target_dstm_ar)) ])
|
|
|
|
feed = [ warped_src, warped_dst]
|
|
feed += target_srcm_ar[::-1]
|
|
feed += target_dstm_ar[::-1]
|
|
|
|
self.src_dst_mask_train = K.function (feed,[src_mask_loss, dst_mask_loss], self.src_dst_mask_opt.get_updates(src_mask_loss+dst_mask_loss, src_dst_mask_loss_train_weights) )
|
|
|
|
if self.options['learn_mask']:
|
|
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1], pred_src_dstm[-1]])
|
|
else:
|
|
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1] ] )
|
|
|
|
self.load_weights_safe(weights_to_load)#, [ [self.src_dst_opt, 'src_dst_opt'], [self.src_dst_mask_opt, 'src_dst_mask_opt']])
|
|
else:
|
|
self.load_weights_safe(weights_to_load)
|
|
if self.options['learn_mask']:
|
|
self.AE_convert = K.function ([warped_dst],[ pred_src_dst[-1], pred_src_dstm[-1] ])
|
|
else:
|
|
self.AE_convert = K.function ([warped_dst],[ pred_src_dst[-1] ])
|
|
|
|
|
|
if self.is_training_mode:
|
|
self.src_sample_losses = []
|
|
self.dst_sample_losses = []
|
|
|
|
f = SampleProcessor.TypeFlags
|
|
face_type = f.FACE_ALIGN_FULL if self.options['face_type'] == 'f' else f.FACE_ALIGN_HALF
|
|
|
|
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution] ]
|
|
output_sample_types += [ [f.TRANSFORMED | face_type | f.MODE_BGR, resolution // (2**i) ] for i in range(ms_count)]
|
|
output_sample_types += [ [f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution // (2**i) ] for i in range(ms_count)]
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
|
debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ),
|
|
output_sample_types=output_sample_types ),
|
|
|
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True),
|
|
output_sample_types=output_sample_types )
|
|
])
|
|
|
|
#override
|
|
def onSave(self):
|
|
opt_ar = [ [self.src_dst_opt, 'src_dst_opt'],
|
|
[self.src_dst_mask_opt, 'src_dst_mask_opt']
|
|
]
|
|
ar = []
|
|
if self.options['archi'] == 'liae':
|
|
ar += [[self.encoder, 'encoder.h5'],
|
|
[self.inter_B, 'inter_B.h5'],
|
|
[self.inter_AB, 'inter_AB.h5'],
|
|
[self.decoder, 'decoder.h5']
|
|
]
|
|
if self.options['learn_mask']:
|
|
ar += [ [self.decoderm, 'decoderm.h5'] ]
|
|
elif self.options['archi'] == 'df' or self.options['archi'] == 'vg':
|
|
ar += [[self.encoder, 'encoder.h5'],
|
|
[self.decoder_src, 'decoder_src.h5'],
|
|
[self.decoder_dst, 'decoder_dst.h5']
|
|
]
|
|
if self.options['learn_mask']:
|
|
ar += [ [self.decoder_srcm, 'decoder_srcm.h5'],
|
|
[self.decoder_dstm, 'decoder_dstm.h5'] ]
|
|
|
|
self.save_weights_safe(ar)
|
|
|
|
|
|
#override
|
|
def onTrainOneIter(self, generators_samples, generators_list):
|
|
src_samples = generators_samples[0]
|
|
dst_samples = generators_samples[1]
|
|
|
|
feed = [src_samples[0], dst_samples[0] ] + \
|
|
src_samples[1:1+self.ms_count*2] + \
|
|
dst_samples[1:1+self.ms_count*2]
|
|
|
|
src_loss, dst_loss, = self.src_dst_train (feed)
|
|
|
|
if self.options['learn_mask']:
|
|
feed = [ src_samples[0], dst_samples[0] ] + \
|
|
src_samples[1+self.ms_count:1+self.ms_count*2] + \
|
|
dst_samples[1+self.ms_count:1+self.ms_count*2]
|
|
src_mask_loss, dst_mask_loss, = self.src_dst_mask_train (feed)
|
|
|
|
return ( ('src_loss', src_loss), ('dst_loss', dst_loss) )
|
|
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][1][0:4] #first 4 samples
|
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
|
test_B = sample[1][1][0:4]
|
|
test_B_m = sample[1][2][0:4]
|
|
|
|
if self.options['learn_mask']:
|
|
S, D, SS, DD, SD, SDM = [ np.clip(x / 2 + 0.5, 0.0, 1.0) for x in ([test_A,test_B] + self.AE_view ([test_A, test_B]) ) ]
|
|
SDM, = [ np.repeat (x, (3,), -1) for x in [SDM] ]
|
|
else:
|
|
S, D, SS, DD, SD, = [ np.clip(x / 2 + 0.5, 0.0, 1.0) for x in ([test_A,test_B] + self.AE_view ([test_A, test_B]) ) ]
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
ar = S[i], SS[i], D[i], DD[i], SD[i]
|
|
#if self.options['learn_mask']:
|
|
# ar += (SDM[i],)
|
|
st.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
return [ ('SAE', np.concatenate (st, axis=0 )), ]
|
|
|
|
def predictor_func (self, face):
|
|
face_tanh = np.clip(face * 2.0 - 1.0, -1.0, 1.0)
|
|
|
|
face_bgr = face_tanh[...,0:3]
|
|
prd = [ (x[0] + 1.0) / 2.0 for x in self.AE_convert ( [ np.expand_dims(face_bgr,0) ] ) ]
|
|
|
|
if not self.options['learn_mask']:
|
|
prd += [ np.expand_dims(face[...,3],-1) ]
|
|
|
|
return np.concatenate ( [prd[0], prd[1]], -1 )
|
|
|
|
#override
|
|
def get_converter(self):
|
|
base_erode_mask_modifier = 30 if self.options['face_type'] == 'f' else 100
|
|
base_blur_mask_modifier = 0 if self.options['face_type'] == 'f' else 100
|
|
|
|
default_erode_mask_modifier = 0
|
|
default_blur_mask_modifier = 100 if (self.options['face_style_power'] or self.options['bg_style_power']) and \
|
|
self.options['face_type'] == 'f' else 0
|
|
|
|
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
|
|
|
|
from converters import ConverterMasked
|
|
return ConverterMasked(self.predictor_func,
|
|
predictor_input_size=self.options['resolution'],
|
|
output_size=self.options['resolution'],
|
|
face_type=face_type,
|
|
default_mode = 1 if self.options['face_style_power'] or self.options['bg_style_power'] else 4,
|
|
base_erode_mask_modifier=base_erode_mask_modifier,
|
|
base_blur_mask_modifier=base_blur_mask_modifier,
|
|
default_erode_mask_modifier=default_erode_mask_modifier,
|
|
default_blur_mask_modifier=default_blur_mask_modifier,
|
|
clip_hborder_mask_per=0.0625 if self.options['face_type'] == 'f' else 0)
|
|
|
|
@staticmethod
|
|
def initialize_nn_functions():
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
class ResidualBlock(object):
|
|
def __init__(self, filters, kernel_size=3, padding='same', use_reflection_padding=False):
|
|
self.filters = filters
|
|
self.kernel_size = kernel_size
|
|
self.padding = padding #if not use_reflection_padding else 'valid'
|
|
self.use_reflection_padding = use_reflection_padding
|
|
|
|
def __call__(self, inp):
|
|
var_x = LeakyReLU(alpha=0.2)(inp)
|
|
|
|
#if self.use_reflection_padding:
|
|
# #var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
|
|
|
|
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=RandomNormal(0, 0.02) )(var_x)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
|
|
#if self.use_reflection_padding:
|
|
# #var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
|
|
|
|
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=RandomNormal(0, 0.02) )(var_x)
|
|
var_x = Scale(gamma_init=keras.initializers.Constant(value=0.1))(var_x)
|
|
var_x = Add()([var_x, inp])
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
return var_x
|
|
SAEModel.ResidualBlock = ResidualBlock
|
|
|
|
def downscale (dim):
|
|
def func(x):
|
|
return LeakyReLU(0.1)(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x))
|
|
return func
|
|
SAEModel.downscale = downscale
|
|
|
|
def downscale_sep (dim):
|
|
def func(x):
|
|
return LeakyReLU(0.1)(SeparableConv2D(dim, kernel_size=5, strides=2, padding='same', depthwise_initializer=RandomNormal(0, 0.02), pointwise_initializer=RandomNormal(0, 0.02) )(x))
|
|
return func
|
|
SAEModel.downscale_sep = downscale_sep
|
|
|
|
def upscale (dim):
|
|
def func(x):
|
|
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same', kernel_initializer=RandomNormal(0, 0.02) )(x)))
|
|
return func
|
|
SAEModel.upscale = upscale
|
|
|
|
def to_bgr (output_nc):
|
|
def func(x):
|
|
return Conv2D(output_nc, kernel_size=5, padding='same', activation='tanh', kernel_initializer=RandomNormal(0, 0.02))(x)
|
|
return func
|
|
SAEModel.to_bgr = to_bgr
|
|
|
|
|
|
@staticmethod
|
|
def LIAEEncFlow(resolution, light_enc, ed_ch_dims=42):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
downscale = SAEModel.downscale
|
|
downscale_sep = SAEModel.downscale_sep
|
|
|
|
def func(input):
|
|
ed_dims = K.int_shape(input)[-1]*ed_ch_dims
|
|
|
|
x = input
|
|
x = downscale(ed_dims)(x)
|
|
if not light_enc:
|
|
x = downscale(ed_dims*2)(x)
|
|
x = downscale(ed_dims*4)(x)
|
|
x = downscale(ed_dims*8)(x)
|
|
else:
|
|
x = downscale_sep(ed_dims*2)(x)
|
|
x = downscale(ed_dims*4)(x)
|
|
x = downscale_sep(ed_dims*8)(x)
|
|
|
|
x = Flatten()(x)
|
|
return x
|
|
return func
|
|
|
|
@staticmethod
|
|
def LIAEInterFlow(resolution, ae_dims=256):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
lowest_dense_res=resolution // 16
|
|
|
|
def func(input):
|
|
x = input[0]
|
|
x = Dense(ae_dims)(x)
|
|
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims*2)(x)
|
|
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims*2))(x)
|
|
x = upscale(ae_dims*2)(x)
|
|
return x
|
|
return func
|
|
|
|
@staticmethod
|
|
def LIAEDecFlow(output_nc,ed_ch_dims=21, multiscale_count=1):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
to_bgr = SAEModel.to_bgr
|
|
ed_dims = output_nc * ed_ch_dims
|
|
|
|
def func(input):
|
|
x = input[0]
|
|
|
|
outputs = []
|
|
x1 = upscale(ed_dims*8)( x )
|
|
|
|
if multiscale_count >= 3:
|
|
outputs += [ to_bgr(output_nc) ( x1 ) ]
|
|
|
|
x2 = upscale(ed_dims*4)( x1 )
|
|
|
|
if multiscale_count >= 2:
|
|
outputs += [ to_bgr(output_nc) ( x2 ) ]
|
|
|
|
x3 = upscale(ed_dims*2)( x2 )
|
|
|
|
outputs += [ to_bgr(output_nc) ( x3 ) ]
|
|
|
|
return outputs
|
|
return func
|
|
|
|
@staticmethod
|
|
def DFEncFlow(resolution, light_enc, ae_dims=512, ed_ch_dims=42):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
downscale = SAEModel.downscale
|
|
downscale_sep = SAEModel.downscale_sep
|
|
lowest_dense_res = resolution // 16
|
|
|
|
def func(input):
|
|
x = input
|
|
|
|
ed_dims = K.int_shape(input)[-1]*ed_ch_dims
|
|
|
|
x = downscale(ed_dims)(x)
|
|
if not light_enc:
|
|
x = downscale(ed_dims*2)(x)
|
|
x = downscale(ed_dims*4)(x)
|
|
x = downscale(ed_dims*8)(x)
|
|
else:
|
|
x = downscale_sep(ed_dims*2)(x)
|
|
x = downscale_sep(ed_dims*4)(x)
|
|
x = downscale_sep(ed_dims*8)(x)
|
|
|
|
x = Dense(ae_dims)(Flatten()(x))
|
|
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
|
|
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x)
|
|
x = upscale(ae_dims)(x)
|
|
|
|
return x
|
|
return func
|
|
|
|
@staticmethod
|
|
def DFDecFlow(output_nc, ed_ch_dims=21, multiscale_count=1):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
to_bgr = SAEModel.to_bgr
|
|
ed_dims = output_nc * ed_ch_dims
|
|
|
|
def func(input):
|
|
x = input[0]
|
|
|
|
outputs = []
|
|
x1 = upscale(ed_dims*8)( x )
|
|
|
|
if multiscale_count >= 3:
|
|
outputs += [ to_bgr(output_nc) ( x1 ) ]
|
|
|
|
x2 = upscale(ed_dims*4)( x1 )
|
|
|
|
if multiscale_count >= 2:
|
|
outputs += [ to_bgr(output_nc) ( x2 ) ]
|
|
|
|
x3 = upscale(ed_dims*2)( x2 )
|
|
|
|
outputs += [ to_bgr(output_nc) ( x3 ) ]
|
|
|
|
return outputs
|
|
return func
|
|
|
|
|
|
|
|
@staticmethod
|
|
def VGEncFlow(resolution, light_enc, ae_dims=512, ed_ch_dims=42):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
downscale = SAEModel.downscale
|
|
downscale_sep = SAEModel.downscale_sep
|
|
ResidualBlock = SAEModel.ResidualBlock
|
|
lowest_dense_res = resolution // 16
|
|
|
|
def func(input):
|
|
x = input
|
|
ed_dims = K.int_shape(input)[-1]*ed_ch_dims
|
|
while np.modf(ed_dims / 4)[0] != 0.0:
|
|
ed_dims -= 1
|
|
|
|
in_conv_filters = ed_dims# if resolution <= 128 else ed_dims + (resolution//128)*ed_ch_dims
|
|
|
|
x = tmp_x = Conv2D (in_conv_filters, kernel_size=5, strides=2, padding='same') (x)
|
|
|
|
for _ in range ( 8 if light_enc else 16 ):
|
|
x = ResidualBlock(ed_dims)(x)
|
|
|
|
x = Add()([x, tmp_x])
|
|
|
|
x = downscale(ed_dims)(x)
|
|
x = SubpixelUpscaler()(x)
|
|
|
|
x = downscale(ed_dims)(x)
|
|
x = SubpixelUpscaler()(x)
|
|
|
|
x = downscale(ed_dims)(x)
|
|
if light_enc:
|
|
x = downscale_sep (ed_dims*2)(x)
|
|
else:
|
|
x = downscale (ed_dims*2)(x)
|
|
|
|
x = downscale(ed_dims*4)(x)
|
|
|
|
if light_enc:
|
|
x = downscale_sep (ed_dims*8)(x)
|
|
else:
|
|
x = downscale (ed_dims*8)(x)
|
|
|
|
x = Dense(ae_dims)(Flatten()(x))
|
|
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
|
|
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x)
|
|
x = upscale(ae_dims)(x)
|
|
return x
|
|
|
|
return func
|
|
|
|
@staticmethod
|
|
def VGDecFlow(output_nc, ed_ch_dims=21, multiscale_count=1):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
upscale = SAEModel.upscale
|
|
to_bgr = SAEModel.to_bgr
|
|
ResidualBlock = SAEModel.ResidualBlock
|
|
ed_dims = output_nc * ed_ch_dims
|
|
|
|
def func(input):
|
|
x = input[0]
|
|
|
|
x = upscale( ed_dims*8 )(x)
|
|
x = ResidualBlock( ed_dims*8 )(x)
|
|
|
|
x = upscale( ed_dims*4 )(x)
|
|
x = ResidualBlock( ed_dims*4 )(x)
|
|
|
|
x = upscale( ed_dims*2 )(x)
|
|
x = ResidualBlock( ed_dims*2 )(x)
|
|
|
|
x = to_bgr(output_nc) (x)
|
|
return x
|
|
|
|
return func
|
|
|
|
Model = SAEModel
|
|
|
|
|
|
|
|
# 'worst' sample booster gives no good result, or I dont know how to filter worst samples properly.
|
|
#
|
|
##gathering array of sample_losses
|
|
#self.src_sample_losses += [[src_sample_idxs[i], src_sample_losses[i]] for i in range(self.batch_size) ]
|
|
#self.dst_sample_losses += [[dst_sample_idxs[i], dst_sample_losses[i]] for i in range(self.batch_size) ]
|
|
#
|
|
#if len(self.src_sample_losses) >= 128: #array is big enough
|
|
# #fetching idxs which losses are bigger than average
|
|
# x = np.array (self.src_sample_losses)
|
|
# self.src_sample_losses = []
|
|
# b = x[:,1]
|
|
# idxs = (x[:,0][ np.argwhere ( b [ b > (np.mean(b)+np.std(b)) ] )[:,0] ]).astype(np.uint)
|
|
# generators_list[0].repeat_sample_idxs(idxs) #ask generator to repeat these sample idxs
|
|
# print ("src repeated %d" % (len(idxs)) )
|
|
#
|
|
#if len(self.dst_sample_losses) >= 128: #array is big enough
|
|
# #fetching idxs which losses are bigger than average
|
|
# x = np.array (self.dst_sample_losses)
|
|
# self.dst_sample_losses = []
|
|
# b = x[:,1]
|
|
# idxs = (x[:,0][ np.argwhere ( b [ b > (np.mean(b)+np.std(b)) ] )[:,0] ]).astype(np.uint)
|
|
# generators_list[1].repeat_sample_idxs(idxs) #ask generator to repeat these sample idxs
|
|
# print ("dst repeated %d" % (len(idxs)) ) |