DeepFaceLab/models/Model_H64/Model.py
iperov 97b6fabaab change 'epoch' to 'iter',
added timestamp prefix to training string
2019-03-12 19:23:52 +04:00

205 lines
No EOL
9.2 KiB
Python

import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samples import *
from interact import interact as io
class Model(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run:
self.options['lighter_ae'] = io.input_bool ("Use lightweight autoencoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight autoencoder is faster, requires less VRAM, sacrificing overall quality. If your GPU VRAM <= 4, you should to choose this option.")
else:
default_lighter_ae = self.options.get('created_vram_gb', 99) <= 4 #temporally support old models, deprecate in future
if 'created_vram_gb' in self.options.keys():
self.options.pop ('created_vram_gb')
self.options['lighter_ae'] = self.options.get('lighter_ae', default_lighter_ae)
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Default DSSIM loss good for initial understanding structure of faces. Use pixel loss after 20k iters to enhance fine details and decrease face jitter.")
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {1.5:4} )
bgr_shape, mask_shape, self.encoder, self.decoder_src, self.decoder_dst = self.Build(self.options['lighter_ae'])
if not self.is_first_run():
weights_to_load = [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
self.load_weights_safe(weights_to_load)
input_src_bgr = Input(bgr_shape)
input_src_mask = Input(mask_shape)
input_dst_bgr = Input(bgr_shape)
input_dst_mask = Input(mask_shape)
rec_src_bgr, rec_src_mask = self.decoder_src( self.encoder(input_src_bgr) )
rec_dst_bgr, rec_dst_mask = self.decoder_dst( self.encoder(input_dst_bgr) )
self.ae = Model([input_src_bgr,input_src_mask,input_dst_bgr,input_dst_mask], [rec_src_bgr, rec_src_mask, rec_dst_bgr, rec_dst_mask] )
self.ae.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[ DSSIMMSEMaskLoss(input_src_mask, is_mse=self.options['pixel_loss']), 'mae', DSSIMMSEMaskLoss(input_dst_mask, is_mse=self.options['pixel_loss']), 'mae' ] )
self.src_view = K.function([input_src_bgr],[rec_src_bgr, rec_src_mask])
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ),
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] )
])
#override
def onSave(self):
self.save_weights_safe( [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']] )
#override
def onTrainOneIter(self, sample, generators_list):
warped_src, target_src, target_src_full_mask = sample[0]
warped_dst, target_dst, target_dst_full_mask = sample[1]
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_full_mask, warped_dst, target_dst_full_mask], [target_src, target_src_full_mask, target_dst, target_dst_full_mask] )
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4]
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.src_view([test_A])
AB, mAB = self.src_view([test_B])
BB, mBB = self.dst_view([test_B])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('H64', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face):
face_64_bgr = face[...,0:3]
face_64_mask = np.expand_dims(face[...,3],-1)
x, mx = self.src_view ( [ np.expand_dims(face_64_bgr,0) ] )
x, mx = x[0], mx[0]
return np.concatenate ( (x,mx), -1 )
#override
def get_converter(self):
from converters import ConverterMasked
return ConverterMasked(self.predictor_func,
predictor_input_size=64,
output_size=64,
face_type=FaceType.HALF,
base_erode_mask_modifier=100,
base_blur_mask_modifier=100)
def Build(self, lighter_ae):
exec(nnlib.code_import_all, locals(), globals())
bgr_shape = (64, 64, 3)
mask_shape = (64, 64, 1)
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(input_shape):
input_layer = Input(input_shape)
x = input_layer
if not lighter_ae:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Dense(1024)(Flatten()(x))
x = Dense(4 * 4 * 1024)(x)
x = Reshape((4, 4, 1024))(x)
x = upscale(512)(x)
else:
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(768)(x)
x = Dense(512)(Flatten()(x))
x = Dense(4 * 4 * 512)(x)
x = Reshape((4, 4, 512))(x)
x = upscale(256)(x)
return Model(input_layer, x)
def Decoder():
if not lighter_ae:
input_ = Input(shape=(8, 8, 512))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
else:
input_ = Input(shape=(8, 8, 256))
x = input_
x = upscale(256)(x)
x = upscale(128)(x)
x = upscale(64)(x)
y = input_ #mask decoder
y = upscale(256)(y)
y = upscale(128)(y)
y = upscale(64)(y)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
return Model(input_, [x,y])
return bgr_shape, mask_shape, Encoder(bgr_shape), Decoder(), Decoder()