mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
Session is now saved to the model folder. blur and erode ranges are increased to -400+400 hist-match-bw is now replaced with seamless2 mode. Added 'ebs' color transfer mode (works only on Windows). FANSEG model (used in FAN-x mask modes) is retrained with new model configuration and now produces better precision and less jitter
102 lines
4.3 KiB
Python
102 lines
4.3 KiB
Python
import numpy as np
|
|
|
|
from nnlib import nnlib
|
|
from models import ModelBase
|
|
from facelib import FaceType
|
|
from facelib import FANSegmentator
|
|
from samplelib import *
|
|
from interact import interact as io
|
|
|
|
class Model(ModelBase):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs,
|
|
ask_enable_autobackup=False,
|
|
ask_write_preview_history=False,
|
|
ask_target_iter=False,
|
|
ask_sort_by_yaw=False,
|
|
ask_random_flip=False,
|
|
ask_src_scale_mod=False)
|
|
|
|
#override
|
|
def onInitializeOptions(self, is_first_run, ask_override):
|
|
default_face_type = 'f'
|
|
if is_first_run:
|
|
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
|
|
else:
|
|
self.options['face_type'] = self.options.get('face_type', default_face_type)
|
|
|
|
#override
|
|
def onInitialize(self):
|
|
exec(nnlib.import_all(), locals(), globals())
|
|
self.set_vram_batch_requirements( {1.5:4} )
|
|
|
|
self.resolution = 256
|
|
self.face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
|
|
|
|
|
|
self.fan_seg = FANSegmentator(self.resolution,
|
|
FaceType.toString(self.face_type),
|
|
load_weights=not self.is_first_run(),
|
|
weights_file_root=self.get_model_root_path(),
|
|
training=True)
|
|
|
|
if self.is_training_mode:
|
|
t = SampleProcessor.Types
|
|
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=True),
|
|
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR_SHUFFLE), 'resolution' : self.resolution, 'motion_blur':(25, 5), 'border_replicate':False },
|
|
{ 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_M), 'resolution': self.resolution },
|
|
]),
|
|
|
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=True ),
|
|
output_sample_types=[ { 'types': (t.IMG_TRANSFORMED , face_type, t.MODE_BGR_SHUFFLE), 'resolution' : self.resolution},
|
|
])
|
|
])
|
|
|
|
#override
|
|
def onSave(self):
|
|
self.fan_seg.save_weights()
|
|
|
|
#override
|
|
def onTrainOneIter(self, generators_samples, generators_list):
|
|
target_src, target_src_mask = generators_samples[0]
|
|
|
|
loss = self.fan_seg.train( target_src, target_src_mask )
|
|
|
|
return ( ('loss', loss), )
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][0][0:4] #first 4 samples
|
|
test_B = sample[1][0][0:4] #first 4 samples
|
|
|
|
mAA = self.fan_seg.extract(test_A)
|
|
mBB = self.fan_seg.extract(test_B)
|
|
|
|
mAA = np.repeat ( mAA, (3,), -1)
|
|
mBB = np.repeat ( mBB, (3,), -1)
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
st.append ( np.concatenate ( (
|
|
test_A[i,:,:,0:3],
|
|
mAA[i],
|
|
test_A[i,:,:,0:3]*mAA[i],
|
|
), axis=1) )
|
|
|
|
st2 = []
|
|
for i in range(0, len(test_B)):
|
|
st2.append ( np.concatenate ( (
|
|
test_B[i,:,:,0:3],
|
|
mBB[i],
|
|
test_B[i,:,:,0:3]*mBB[i],
|
|
), axis=1) )
|
|
|
|
return [ ('training data', np.concatenate ( st, axis=0 ) ),
|
|
('evaluating data', np.concatenate ( st2, axis=0 ) ),
|
|
]
|