DeepFaceLab/samplelib/SampleHost.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

188 lines
6.7 KiB
Python

import multiprocessing
import operator
import pickle
import traceback
from pathlib import Path
import samplelib.PackedFaceset
from core import pathex
from core.interact import interact as io
from core.joblib import Subprocessor
from DFLIMG import *
from facelib import FaceType, LandmarksProcessor
from .Sample import Sample, SampleType
class SampleHost:
samples_cache = dict()
@staticmethod
def get_person_id_max_count(samples_path):
samples = None
try:
samples = samplelib.PackedFaceset.load(samples_path)
except:
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(samples_dat_path)}, {traceback.format_exc()}")
if samples is None:
raise ValueError("packed faceset not found.")
persons_name_idxs = {}
for sample in samples:
persons_name_idxs[sample.person_name] = 0
return len(list(persons_name_idxs.keys()))
@staticmethod
def load(sample_type, samples_path):
samples_cache = SampleHost.samples_cache
if str(samples_path) not in samples_cache.keys():
samples_cache[str(samples_path)] = [None]*SampleType.QTY
samples = samples_cache[str(samples_path)]
if sample_type == SampleType.IMAGE:
if samples[sample_type] is None:
samples[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( pathex.get_image_paths(samples_path), "Loading") ]
elif sample_type == SampleType.FACE:
if samples[sample_type] is None:
try:
result = samplelib.PackedFaceset.load(samples_path)
except:
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(samples_dat_path)}, {traceback.format_exc()}")
if result is not None:
io.log_info (f"Loaded {len(result)} packed faces from {samples_path}")
if result is None:
result = SampleHost.load_face_samples( pathex.get_image_paths(samples_path) )
samples[sample_type] = result
elif sample_type == SampleType.FACE_TEMPORAL_SORTED:
result = SampleHost.load (SampleType.FACE, samples_path)
result = SampleHost.upgradeToFaceTemporalSortedSamples(result)
samples[sample_type] = result
return samples[sample_type]
@staticmethod
def load_face_samples ( image_paths):
result = FaceSamplesLoaderSubprocessor(image_paths).run()
sample_list = []
for filename, \
( face_type,
shape,
landmarks,
ie_polys,
eyebrows_expand_mod,
source_filename,
) in result:
sample_list.append( Sample(filename=filename,
sample_type=SampleType.FACE,
face_type=FaceType.fromString (face_type),
shape=shape,
landmarks=landmarks,
ie_polys=ie_polys,
eyebrows_expand_mod=eyebrows_expand_mod,
source_filename=source_filename,
))
return sample_list
"""
@staticmethod
def load_face_samples ( image_paths):
sample_list = []
for filename in io.progress_bar_generator (image_paths, desc="Loading"):
dflimg = DFLIMG.load (Path(filename))
if dflimg is None:
io.log_err (f"{filename} is not a dfl image file.")
else:
sample_list.append( Sample(filename=filename,
sample_type=SampleType.FACE,
face_type=FaceType.fromString ( dflimg.get_face_type() ),
shape=dflimg.get_shape(),
landmarks=dflimg.get_landmarks(),
ie_polys=dflimg.get_ie_polys(),
eyebrows_expand_mod=dflimg.get_eyebrows_expand_mod(),
source_filename=dflimg.get_source_filename(),
))
return sample_list
"""
@staticmethod
def upgradeToFaceTemporalSortedSamples( samples ):
new_s = [ (s, s.source_filename) for s in samples]
new_s = sorted(new_s, key=operator.itemgetter(1))
return [ s[0] for s in new_s]
class FaceSamplesLoaderSubprocessor(Subprocessor):
#override
def __init__(self, image_paths ):
self.image_paths = image_paths
self.image_paths_len = len(image_paths)
self.idxs = [*range(self.image_paths_len)]
self.result = [None]*self.image_paths_len
super().__init__('FaceSamplesLoader', FaceSamplesLoaderSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("Loading samples", len (self.image_paths))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
for i in range(min(multiprocessing.cpu_count(), 8) ):
yield 'CPU%d' % (i), {}, {}
#override
def get_data(self, host_dict):
if len (self.idxs) > 0:
idx = self.idxs.pop(0)
return idx, self.image_paths[idx]
return None
#override
def on_data_return (self, host_dict, data):
self.idxs.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
idx, dflimg = result
self.result[idx] = (self.image_paths[idx], dflimg)
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
class Cli(Subprocessor.Cli):
#override
def process_data(self, data):
idx, filename = data
dflimg = DFLIMG.load (Path(filename))
if dflimg is None:
self.log_err (f"FaceSamplesLoader: {filename} is not a dfl image file.")
data = None
else:
data = (dflimg.get_face_type(),
dflimg.get_shape(),
dflimg.get_landmarks(),
dflimg.get_ie_polys(),
dflimg.get_eyebrows_expand_mod(),
dflimg.get_source_filename() )
return idx, data
#override
def get_data_name (self, data):
#return string identificator of your data
return data[1]