DeepFaceLab/samplelib/SampleGeneratorFaceTemporal.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

88 lines
3.2 KiB
Python

import multiprocessing
import pickle
import time
import traceback
import cv2
import numpy as np
from core import mplib
from core.joblib import SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
SampleType)
class SampleGeneratorFaceTemporal(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
generators_count=2,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.temporal_image_count = temporal_image_count
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
if self.debug:
self.generators_count = 1
else:
self.generators_count = generators_count
samples = SampleHost.load (SampleType.FACE_TEMPORAL_SORTED, self.samples_path)
samples_len = len(samples)
if samples_len == 0:
raise ValueError('No training data provided.')
mult_max = 1
l = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
index_host = mplib.IndexHost(l+1)
pickled_samples = pickle.dumps(samples, 4)
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param):
mult_max = 1
bs = self.batch_size
pickled_samples, index_host = param
samples = pickle.loads(pickled_samples)
while True:
batches = None
indexes = index_host.multi_get(bs)
for n_batch in range(self.batch_size):
idx = indexes[n_batch]
temporal_samples = []
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:
temporal_samples += SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)[0]
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(temporal_samples)) ]
for i in range(len(temporal_samples)):
batches[i].append ( temporal_samples[i] )
yield [ np.array(batch) for batch in batches]