mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
487 lines
16 KiB
Python
487 lines
16 KiB
Python
import multiprocessing
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from DFLIMG import *
|
|
from facelib import FaceType, LandmarksProcessor
|
|
from core.interact import interact as io
|
|
from core.joblib import Subprocessor
|
|
from core import pathex
|
|
from core.cv2ex import *
|
|
|
|
from . import Extractor, Sorter
|
|
from .Extractor import ExtractSubprocessor
|
|
|
|
|
|
def extract_vggface2_dataset(input_dir, device_args={} ):
|
|
multi_gpu = device_args.get('multi_gpu', False)
|
|
cpu_only = device_args.get('cpu_only', False)
|
|
|
|
input_path = Path(input_dir)
|
|
if not input_path.exists():
|
|
raise ValueError('Input directory not found. Please ensure it exists.')
|
|
|
|
bb_csv = input_path / 'loose_bb_train.csv'
|
|
if not bb_csv.exists():
|
|
raise ValueError('loose_bb_train.csv found. Please ensure it exists.')
|
|
|
|
bb_lines = bb_csv.read_text().split('\n')
|
|
bb_lines.pop(0)
|
|
|
|
bb_dict = {}
|
|
for line in bb_lines:
|
|
name, l, t, w, h = line.split(',')
|
|
name = name[1:-1]
|
|
l, t, w, h = [ int(x) for x in (l, t, w, h) ]
|
|
bb_dict[name] = (l,t,w, h)
|
|
|
|
|
|
output_path = input_path.parent / (input_path.name + '_out')
|
|
|
|
dir_names = pathex.get_all_dir_names(input_path)
|
|
|
|
if not output_path.exists():
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
data = []
|
|
for dir_name in io.progress_bar_generator(dir_names, "Collecting"):
|
|
cur_input_path = input_path / dir_name
|
|
cur_output_path = output_path / dir_name
|
|
|
|
if not cur_output_path.exists():
|
|
cur_output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
input_path_image_paths = pathex.get_image_paths(cur_input_path)
|
|
|
|
for filename in input_path_image_paths:
|
|
filename_path = Path(filename)
|
|
|
|
name = filename_path.parent.name + '/' + filename_path.stem
|
|
if name not in bb_dict:
|
|
continue
|
|
|
|
l,t,w,h = bb_dict[name]
|
|
if min(w,h) < 128:
|
|
continue
|
|
|
|
data += [ ExtractSubprocessor.Data(filename=filename,rects=[ (l,t,l+w,t+h) ], landmarks_accurate=False, force_output_path=cur_output_path ) ]
|
|
|
|
face_type = FaceType.fromString('full_face')
|
|
|
|
io.log_info ('Performing 2nd pass...')
|
|
data = ExtractSubprocessor (data, 'landmarks', 256, face_type, debug_dir=None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
|
|
|
|
io.log_info ('Performing 3rd pass...')
|
|
ExtractSubprocessor (data, 'final', 256, face_type, debug_dir=None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=None).run()
|
|
|
|
|
|
"""
|
|
import code
|
|
code.interact(local=dict(globals(), **locals()))
|
|
|
|
data_len = len(data)
|
|
i = 0
|
|
while i < data_len-1:
|
|
i_name = Path(data[i].filename).parent.name
|
|
|
|
sub_data = []
|
|
|
|
for j in range (i, data_len):
|
|
j_name = Path(data[j].filename).parent.name
|
|
if i_name == j_name:
|
|
sub_data += [ data[j] ]
|
|
else:
|
|
break
|
|
i = j
|
|
|
|
cur_output_path = output_path / i_name
|
|
|
|
io.log_info (f"Processing: {str(cur_output_path)}, {i}/{data_len} ")
|
|
|
|
if not cur_output_path.exists():
|
|
cur_output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for dir_name in dir_names:
|
|
|
|
cur_input_path = input_path / dir_name
|
|
cur_output_path = output_path / dir_name
|
|
|
|
input_path_image_paths = pathex.get_image_paths(cur_input_path)
|
|
l = len(input_path_image_paths)
|
|
#if l < 250 or l > 350:
|
|
# continue
|
|
|
|
io.log_info (f"Processing: {str(cur_input_path)} ")
|
|
|
|
if not cur_output_path.exists():
|
|
cur_output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
data = []
|
|
for filename in input_path_image_paths:
|
|
filename_path = Path(filename)
|
|
|
|
name = filename_path.parent.name + '/' + filename_path.stem
|
|
if name not in bb_dict:
|
|
continue
|
|
|
|
bb = bb_dict[name]
|
|
l,t,w,h = bb
|
|
if min(w,h) < 128:
|
|
continue
|
|
|
|
data += [ ExtractSubprocessor.Data(filename=filename,rects=[ (l,t,l+w,t+h) ], landmarks_accurate=False ) ]
|
|
|
|
|
|
|
|
io.log_info ('Performing 2nd pass...')
|
|
data = ExtractSubprocessor (data, 'landmarks', 256, face_type, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False).run()
|
|
|
|
io.log_info ('Performing 3rd pass...')
|
|
data = ExtractSubprocessor (data, 'final', 256, face_type, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False, final_output_path=cur_output_path).run()
|
|
|
|
|
|
io.log_info (f"Sorting: {str(cur_output_path)} ")
|
|
Sorter.main (input_path=str(cur_output_path), sort_by_method='hist')
|
|
|
|
import code
|
|
code.interact(local=dict(globals(), **locals()))
|
|
|
|
#try:
|
|
# io.log_info (f"Removing: {str(cur_input_path)} ")
|
|
# shutil.rmtree(cur_input_path)
|
|
#except:
|
|
# io.log_info (f"unable to remove: {str(cur_input_path)} ")
|
|
|
|
|
|
|
|
|
|
def extract_vggface2_dataset(input_dir, device_args={} ):
|
|
multi_gpu = device_args.get('multi_gpu', False)
|
|
cpu_only = device_args.get('cpu_only', False)
|
|
|
|
input_path = Path(input_dir)
|
|
if not input_path.exists():
|
|
raise ValueError('Input directory not found. Please ensure it exists.')
|
|
|
|
output_path = input_path.parent / (input_path.name + '_out')
|
|
|
|
dir_names = pathex.get_all_dir_names(input_path)
|
|
|
|
if not output_path.exists():
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
for dir_name in dir_names:
|
|
|
|
cur_input_path = input_path / dir_name
|
|
cur_output_path = output_path / dir_name
|
|
|
|
l = len(pathex.get_image_paths(cur_input_path))
|
|
if l < 250 or l > 350:
|
|
continue
|
|
|
|
io.log_info (f"Processing: {str(cur_input_path)} ")
|
|
|
|
if not cur_output_path.exists():
|
|
cur_output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
Extractor.main( str(cur_input_path),
|
|
str(cur_output_path),
|
|
detector='s3fd',
|
|
image_size=256,
|
|
face_type='full_face',
|
|
max_faces_from_image=1,
|
|
device_args=device_args )
|
|
|
|
io.log_info (f"Sorting: {str(cur_input_path)} ")
|
|
Sorter.main (input_path=str(cur_output_path), sort_by_method='hist')
|
|
|
|
try:
|
|
io.log_info (f"Removing: {str(cur_input_path)} ")
|
|
shutil.rmtree(cur_input_path)
|
|
except:
|
|
io.log_info (f"unable to remove: {str(cur_input_path)} ")
|
|
|
|
"""
|
|
|
|
class CelebAMASKHQSubprocessor(Subprocessor):
|
|
class Cli(Subprocessor.Cli):
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.masks_files_paths = client_dict['masks_files_paths']
|
|
return None
|
|
|
|
#override
|
|
def process_data(self, data):
|
|
filename = data[0]
|
|
|
|
dflimg = DFLIMG.load(Path(filename))
|
|
|
|
image_to_face_mat = dflimg.get_image_to_face_mat()
|
|
src_filename = dflimg.get_source_filename()
|
|
|
|
img = cv2_imread(filename)
|
|
h,w,c = img.shape
|
|
|
|
fanseg_mask = LandmarksProcessor.get_image_hull_mask(img.shape, dflimg.get_landmarks() )
|
|
|
|
idx_name = '%.5d' % int(src_filename.split('.')[0])
|
|
idx_files = [ x for x in self.masks_files_paths if idx_name in x ]
|
|
|
|
skin_files = [ x for x in idx_files if 'skin' in x ]
|
|
eye_glass_files = [ x for x in idx_files if 'eye_g' in x ]
|
|
|
|
for files, is_invert in [ (skin_files,False),
|
|
(eye_glass_files,True) ]:
|
|
if len(files) > 0:
|
|
mask = cv2_imread(files[0])
|
|
mask = mask[...,0]
|
|
mask[mask == 255] = 1
|
|
mask = mask.astype(np.float32)
|
|
mask = cv2.resize(mask, (1024,1024) )
|
|
mask = cv2.warpAffine(mask, image_to_face_mat, (w, h), cv2.INTER_LANCZOS4)
|
|
|
|
if not is_invert:
|
|
fanseg_mask *= mask[...,None]
|
|
else:
|
|
fanseg_mask *= (1-mask[...,None])
|
|
|
|
dflimg.embed_and_set (filename, fanseg_mask=fanseg_mask)
|
|
return 1
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
#return string identificator of your data
|
|
return data[0]
|
|
|
|
#override
|
|
def __init__(self, image_paths, masks_files_paths ):
|
|
self.image_paths = image_paths
|
|
self.masks_files_paths = masks_files_paths
|
|
|
|
self.result = []
|
|
super().__init__('CelebAMASKHQSubprocessor', CelebAMASKHQSubprocessor.Cli, 60)
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(min(multiprocessing.cpu_count(), 8)):
|
|
yield 'CPU%d' % (i), {}, {'masks_files_paths' : self.masks_files_paths }
|
|
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("Processing", len (self.image_paths))
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.image_paths) > 0:
|
|
return [self.image_paths.pop(0)]
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.image_paths.insert(0, data[0])
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
io.progress_bar_inc(1)
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.result
|
|
|
|
#unused in end user workflow
|
|
def apply_celebamaskhq(input_dir ):
|
|
|
|
input_path = Path(input_dir)
|
|
|
|
img_path = input_path / 'aligned'
|
|
mask_path = input_path / 'mask'
|
|
|
|
if not img_path.exists():
|
|
raise ValueError(f'{str(img_path)} directory not found. Please ensure it exists.')
|
|
|
|
CelebAMASKHQSubprocessor(pathex.get_image_paths(img_path),
|
|
pathex.get_image_paths(mask_path, subdirs=True) ).run()
|
|
|
|
return
|
|
|
|
paths_to_extract = []
|
|
for filename in io.progress_bar_generator(pathex.get_image_paths(img_path), desc="Processing"):
|
|
filepath = Path(filename)
|
|
dflimg = DFLIMG.load(filepath)
|
|
|
|
if dflimg is not None:
|
|
paths_to_extract.append (filepath)
|
|
|
|
image_to_face_mat = dflimg.get_image_to_face_mat()
|
|
src_filename = dflimg.get_source_filename()
|
|
|
|
#img = cv2_imread(filename)
|
|
h,w,c = dflimg.get_shape()
|
|
|
|
fanseg_mask = LandmarksProcessor.get_image_hull_mask( (h,w,c), dflimg.get_landmarks() )
|
|
|
|
idx_name = '%.5d' % int(src_filename.split('.')[0])
|
|
idx_files = [ x for x in masks_files if idx_name in x ]
|
|
|
|
skin_files = [ x for x in idx_files if 'skin' in x ]
|
|
eye_glass_files = [ x for x in idx_files if 'eye_g' in x ]
|
|
|
|
for files, is_invert in [ (skin_files,False),
|
|
(eye_glass_files,True) ]:
|
|
|
|
if len(files) > 0:
|
|
mask = cv2_imread(files[0])
|
|
mask = mask[...,0]
|
|
mask[mask == 255] = 1
|
|
mask = mask.astype(np.float32)
|
|
mask = cv2.resize(mask, (1024,1024) )
|
|
mask = cv2.warpAffine(mask, image_to_face_mat, (w, h), cv2.INTER_LANCZOS4)
|
|
|
|
if not is_invert:
|
|
fanseg_mask *= mask[...,None]
|
|
else:
|
|
fanseg_mask *= (1-mask[...,None])
|
|
|
|
#cv2.imshow("", (fanseg_mask*255).astype(np.uint8) )
|
|
#cv2.waitKey(0)
|
|
|
|
|
|
dflimg.embed_and_set (filename, fanseg_mask=fanseg_mask)
|
|
|
|
|
|
#import code
|
|
#code.interact(local=dict(globals(), **locals()))
|
|
|
|
|
|
|
|
#unused in end user workflow
|
|
def extract_fanseg(input_dir, device_args={} ):
|
|
multi_gpu = device_args.get('multi_gpu', False)
|
|
cpu_only = device_args.get('cpu_only', False)
|
|
|
|
input_path = Path(input_dir)
|
|
if not input_path.exists():
|
|
raise ValueError('Input directory not found. Please ensure it exists.')
|
|
|
|
paths_to_extract = []
|
|
for filename in pathex.get_image_paths(input_path) :
|
|
filepath = Path(filename)
|
|
dflimg = DFLIMG.load ( filepath )
|
|
if dflimg is not None:
|
|
paths_to_extract.append (filepath)
|
|
|
|
paths_to_extract_len = len(paths_to_extract)
|
|
if paths_to_extract_len > 0:
|
|
io.log_info ("Performing extract fanseg for %d files..." % (paths_to_extract_len) )
|
|
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in paths_to_extract ], 'fanseg', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
|
|
|
|
#unused in end user workflow
|
|
def extract_umd_csv(input_file_csv,
|
|
image_size=256,
|
|
face_type='full_face',
|
|
device_args={} ):
|
|
|
|
#extract faces from umdfaces.io dataset csv file with pitch,yaw,roll info.
|
|
multi_gpu = device_args.get('multi_gpu', False)
|
|
cpu_only = device_args.get('cpu_only', False)
|
|
face_type = FaceType.fromString(face_type)
|
|
|
|
input_file_csv_path = Path(input_file_csv)
|
|
if not input_file_csv_path.exists():
|
|
raise ValueError('input_file_csv not found. Please ensure it exists.')
|
|
|
|
input_file_csv_root_path = input_file_csv_path.parent
|
|
output_path = input_file_csv_path.parent / ('aligned_' + input_file_csv_path.name)
|
|
|
|
io.log_info("Output dir is %s." % (str(output_path)) )
|
|
|
|
if output_path.exists():
|
|
output_images_paths = pathex.get_image_paths(output_path)
|
|
if len(output_images_paths) > 0:
|
|
io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False )
|
|
for filename in output_images_paths:
|
|
Path(filename).unlink()
|
|
else:
|
|
output_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
try:
|
|
with open( str(input_file_csv_path), 'r') as f:
|
|
csv_file = f.read()
|
|
except Exception as e:
|
|
io.log_err("Unable to open or read file " + str(input_file_csv_path) + ": " + str(e) )
|
|
return
|
|
|
|
strings = csv_file.split('\n')
|
|
keys = strings[0].split(',')
|
|
keys_len = len(keys)
|
|
csv_data = []
|
|
for i in range(1, len(strings)):
|
|
values = strings[i].split(',')
|
|
if keys_len != len(values):
|
|
io.log_err("Wrong string in csv file, skipping.")
|
|
continue
|
|
|
|
csv_data += [ { keys[n] : values[n] for n in range(keys_len) } ]
|
|
|
|
data = []
|
|
for d in csv_data:
|
|
filename = input_file_csv_root_path / d['FILE']
|
|
|
|
|
|
x,y,w,h = float(d['FACE_X']), float(d['FACE_Y']), float(d['FACE_WIDTH']), float(d['FACE_HEIGHT'])
|
|
|
|
data += [ ExtractSubprocessor.Data(filename=filename, rects=[ [x,y,x+w,y+h] ]) ]
|
|
|
|
images_found = len(data)
|
|
faces_detected = 0
|
|
if len(data) > 0:
|
|
io.log_info ("Performing 2nd pass from csv file...")
|
|
data = ExtractSubprocessor (data, 'landmarks', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
|
|
|
|
io.log_info ('Performing 3rd pass...')
|
|
data = ExtractSubprocessor (data, 'final', image_size, face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
|
|
faces_detected += sum([d.faces_detected for d in data])
|
|
|
|
|
|
io.log_info ('-------------------------')
|
|
io.log_info ('Images found: %d' % (images_found) )
|
|
io.log_info ('Faces detected: %d' % (faces_detected) )
|
|
io.log_info ('-------------------------')
|
|
|
|
def dev_test(input_dir):
|
|
input_path = Path(input_dir)
|
|
|
|
dir_names = pathex.get_all_dir_names(input_path)
|
|
|
|
for dir_name in io.progress_bar_generator(dir_names, desc="Processing"):
|
|
|
|
img_paths = pathex.get_image_paths (input_path / dir_name)
|
|
for filename in img_paths:
|
|
filepath = Path(filename)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
if dflimg is None:
|
|
raise ValueError
|
|
|
|
dflimg.embed_and_set(filename, person_name=dir_name)
|
|
|
|
#import code
|
|
#code.interact(local=dict(globals(), **locals()))
|
|
|