DeepFaceLab/mainscripts/VideoEd.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

214 lines
6.7 KiB
Python

import subprocess
import numpy as np
import ffmpeg
from pathlib import Path
from core import pathex
from core.interact import interact as io
def extract_video(input_file, output_dir, output_ext=None, fps=None):
input_file_path = Path(input_file)
output_path = Path(output_dir)
if not output_path.exists():
output_path.mkdir(exist_ok=True)
if input_file_path.suffix == '.*':
input_file_path = pathex.get_first_file_by_stem (input_file_path.parent, input_file_path.stem)
else:
if not input_file_path.exists():
input_file_path = None
if input_file_path is None:
io.log_err("input_file not found.")
return
if fps is None:
fps = io.input_int ("Enter FPS", 0, help_message="How many frames of every second of the video will be extracted. 0 - full fps")
if output_ext is None:
output_ext = io.input_str ("Output image format", "png", ["png","jpg"], help_message="png is lossless, but extraction is x10 slower for HDD, requires x10 more disk space than jpg.")
for filename in pathex.get_image_paths (output_path, ['.'+output_ext]):
Path(filename).unlink()
job = ffmpeg.input(str(input_file_path))
kwargs = {'pix_fmt': 'rgb24'}
if fps != 0:
kwargs.update ({'r':str(fps)})
if output_ext == 'jpg':
kwargs.update ({'q:v':'2'}) #highest quality for jpg
job = job.output( str (output_path / ('%5d.'+output_ext)), **kwargs )
try:
job = job.run()
except:
io.log_err ("ffmpeg fail, job commandline:" + str(job.compile()) )
def cut_video ( input_file, from_time=None, to_time=None, audio_track_id=None, bitrate=None):
input_file_path = Path(input_file)
if input_file_path is None:
io.log_err("input_file not found.")
return
output_file_path = input_file_path.parent / (input_file_path.stem + "_cut" + input_file_path.suffix)
if from_time is None:
from_time = io.input_str ("From time", "00:00:00.000")
if to_time is None:
to_time = io.input_str ("To time", "00:00:00.000")
if audio_track_id is None:
audio_track_id = io.input_int ("Specify audio track id.", 0)
if bitrate is None:
bitrate = max (1, io.input_int ("Bitrate of output file in MB/s", 25) )
kwargs = {"c:v": "libx265",
"b:v": "%dM" %(bitrate),
"pix_fmt": "yuv420p",
}
job = ffmpeg.input(str(input_file_path), ss=from_time, to=to_time)
job_v = job['v:0']
job_a = job['a:' + str(audio_track_id) + '?' ]
job = ffmpeg.output(job_v, job_a, str(output_file_path), **kwargs).overwrite_output()
try:
job = job.run()
except:
io.log_err ("ffmpeg fail, job commandline:" + str(job.compile()) )
def denoise_image_sequence( input_dir, ext=None, factor=None ):
input_path = Path(input_dir)
if not input_path.exists():
io.log_err("input_dir not found.")
return
if ext is None:
ext = io.input_str ("Input image format (extension)", "png")
if factor is None:
factor = np.clip ( io.input_int ("Denoise factor?", 5, add_info="1-20"), 1, 20 )
kwargs = {}
if ext == 'jpg':
kwargs.update ({'q:v':'2'})
job = ( ffmpeg
.input(str ( input_path / ('%5d.'+ext) ) )
.filter("hqdn3d", factor, factor, 5,5)
.output(str ( input_path / ('%5d.'+ext) ), **kwargs )
)
try:
job = job.run()
except:
io.log_err ("ffmpeg fail, job commandline:" + str(job.compile()) )
def video_from_sequence( input_dir, output_file, reference_file=None, ext=None, fps=None, bitrate=None, lossless=None ):
input_path = Path(input_dir)
output_file_path = Path(output_file)
reference_file_path = Path(reference_file) if reference_file is not None else None
if not input_path.exists():
io.log_err("input_dir not found.")
return
if not output_file_path.parent.exists():
output_file_path.parent.mkdir(parents=True, exist_ok=True)
return
out_ext = output_file_path.suffix
if ext is None:
ext = io.input_str ("Input image format (extension)", "png")
if lossless is None:
lossless = io.input_bool ("Use lossless codec", False)
video_id = None
audio_id = None
ref_in_a = None
if reference_file_path is not None:
if reference_file_path.suffix == '.*':
reference_file_path = pathex.get_first_file_by_stem (reference_file_path.parent, reference_file_path.stem)
else:
if not reference_file_path.exists():
reference_file_path = None
if reference_file_path is None:
io.log_err("reference_file not found.")
return
#probing reference file
probe = ffmpeg.probe (str(reference_file_path))
#getting first video and audio streams id with fps
for stream in probe['streams']:
if video_id is None and stream['codec_type'] == 'video':
video_id = stream['index']
fps = stream['r_frame_rate']
if audio_id is None and stream['codec_type'] == 'audio':
audio_id = stream['index']
if audio_id is not None:
#has audio track
ref_in_a = ffmpeg.input (str(reference_file_path))[str(audio_id)]
if fps is None:
#if fps not specified and not overwritten by reference-file
fps = max (1, io.input_int ("Enter FPS", 25) )
if not lossless and bitrate is None:
bitrate = max (1, io.input_int ("Bitrate of output file in MB/s", 16) )
input_image_paths = pathex.get_image_paths(input_path)
i_in = ffmpeg.input('pipe:', format='image2pipe', r=fps)
output_args = [i_in]
if ref_in_a is not None:
output_args += [ref_in_a]
output_args += [str (output_file_path)]
output_kwargs = {}
if lossless:
output_kwargs.update ({"c:v": "png"
})
else:
output_kwargs.update ({"c:v": "libx265",
"b:v": "%dM" %(bitrate),
"pix_fmt": "yuv420p",
})
output_kwargs.update ({"c:a": "aac",
"b:a": "192k",
"ar" : "48000"
})
job = ( ffmpeg.output(*output_args, **output_kwargs).overwrite_output() )
try:
job_run = job.run_async(pipe_stdin=True)
for image_path in input_image_paths:
with open (image_path, "rb") as f:
image_bytes = f.read()
job_run.stdin.write (image_bytes)
job_run.stdin.close()
job_run.wait()
except:
io.log_err ("ffmpeg fail, job commandline:" + str(job.compile()) )