mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
269 lines
11 KiB
Python
269 lines
11 KiB
Python
import operator
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core.leras import nn
|
|
|
|
class S3FDExtractor(object):
|
|
def __init__(self, place_model_on_cpu=False):
|
|
nn.initialize(data_format="NHWC")
|
|
tf = nn.tf
|
|
|
|
model_path = Path(__file__).parent / "S3FD.npy"
|
|
if not model_path.exists():
|
|
raise Exception("Unable to load S3FD.npy")
|
|
|
|
class L2Norm(nn.LayerBase):
|
|
def __init__(self, n_channels, **kwargs):
|
|
self.n_channels = n_channels
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
self.weight = tf.get_variable ("weight", (1, 1, 1, self.n_channels), dtype=nn.tf_floatx, initializer=tf.initializers.ones )
|
|
|
|
def get_weights(self):
|
|
return [self.weight]
|
|
|
|
def __call__(self, inputs):
|
|
x = inputs
|
|
x = x / (tf.sqrt( tf.reduce_sum( tf.pow(x, 2), axis=-1, keepdims=True ) ) + 1e-10) * self.weight
|
|
return x
|
|
|
|
class S3FD(nn.ModelBase):
|
|
def __init__(self):
|
|
super().__init__(name='S3FD')
|
|
|
|
def on_build(self):
|
|
self.minus = tf.constant([104,117,123], dtype=nn.tf_floatx )
|
|
self.conv1_1 = nn.Conv2D(3, 64, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv1_2 = nn.Conv2D(64, 64, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv2_1 = nn.Conv2D(64, 128, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv2_2 = nn.Conv2D(128, 128, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv3_1 = nn.Conv2D(128, 256, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv3_2 = nn.Conv2D(256, 256, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv3_3 = nn.Conv2D(256, 256, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv4_1 = nn.Conv2D(256, 512, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv4_2 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv4_3 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv5_1 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv5_2 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv5_3 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.fc6 = nn.Conv2D(512, 1024, kernel_size=3, strides=1, padding=3)
|
|
self.fc7 = nn.Conv2D(1024, 1024, kernel_size=1, strides=1, padding='SAME')
|
|
|
|
self.conv6_1 = nn.Conv2D(1024, 256, kernel_size=1, strides=1, padding='SAME')
|
|
self.conv6_2 = nn.Conv2D(256, 512, kernel_size=3, strides=2, padding='SAME')
|
|
|
|
self.conv7_1 = nn.Conv2D(512, 128, kernel_size=1, strides=1, padding='SAME')
|
|
self.conv7_2 = nn.Conv2D(128, 256, kernel_size=3, strides=2, padding='SAME')
|
|
|
|
self.conv3_3_norm = L2Norm(256)
|
|
self.conv4_3_norm = L2Norm(512)
|
|
self.conv5_3_norm = L2Norm(512)
|
|
|
|
|
|
self.conv3_3_norm_mbox_conf = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv3_3_norm_mbox_loc = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv4_3_norm_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv4_3_norm_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv5_3_norm_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv5_3_norm_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.fc7_mbox_conf = nn.Conv2D(1024, 2, kernel_size=3, strides=1, padding='SAME')
|
|
self.fc7_mbox_loc = nn.Conv2D(1024, 4, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv6_2_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv6_2_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
self.conv7_2_mbox_conf = nn.Conv2D(256, 2, kernel_size=3, strides=1, padding='SAME')
|
|
self.conv7_2_mbox_loc = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME')
|
|
|
|
def forward(self, inp):
|
|
x, = inp
|
|
x = x - self.minus
|
|
x = tf.nn.relu(self.conv1_1(x))
|
|
x = tf.nn.relu(self.conv1_2(x))
|
|
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
|
|
|
|
x = tf.nn.relu(self.conv2_1(x))
|
|
x = tf.nn.relu(self.conv2_2(x))
|
|
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
|
|
|
|
x = tf.nn.relu(self.conv3_1(x))
|
|
x = tf.nn.relu(self.conv3_2(x))
|
|
x = tf.nn.relu(self.conv3_3(x))
|
|
f3_3 = x
|
|
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
|
|
|
|
x = tf.nn.relu(self.conv4_1(x))
|
|
x = tf.nn.relu(self.conv4_2(x))
|
|
x = tf.nn.relu(self.conv4_3(x))
|
|
f4_3 = x
|
|
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
|
|
|
|
x = tf.nn.relu(self.conv5_1(x))
|
|
x = tf.nn.relu(self.conv5_2(x))
|
|
x = tf.nn.relu(self.conv5_3(x))
|
|
f5_3 = x
|
|
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
|
|
|
|
x = tf.nn.relu(self.fc6(x))
|
|
x = tf.nn.relu(self.fc7(x))
|
|
ffc7 = x
|
|
|
|
x = tf.nn.relu(self.conv6_1(x))
|
|
x = tf.nn.relu(self.conv6_2(x))
|
|
f6_2 = x
|
|
|
|
x = tf.nn.relu(self.conv7_1(x))
|
|
x = tf.nn.relu(self.conv7_2(x))
|
|
f7_2 = x
|
|
|
|
f3_3 = self.conv3_3_norm(f3_3)
|
|
f4_3 = self.conv4_3_norm(f4_3)
|
|
f5_3 = self.conv5_3_norm(f5_3)
|
|
|
|
cls1 = self.conv3_3_norm_mbox_conf(f3_3)
|
|
reg1 = self.conv3_3_norm_mbox_loc(f3_3)
|
|
|
|
cls2 = tf.nn.softmax(self.conv4_3_norm_mbox_conf(f4_3))
|
|
reg2 = self.conv4_3_norm_mbox_loc(f4_3)
|
|
|
|
cls3 = tf.nn.softmax(self.conv5_3_norm_mbox_conf(f5_3))
|
|
reg3 = self.conv5_3_norm_mbox_loc(f5_3)
|
|
|
|
cls4 = tf.nn.softmax(self.fc7_mbox_conf(ffc7))
|
|
reg4 = self.fc7_mbox_loc(ffc7)
|
|
|
|
cls5 = tf.nn.softmax(self.conv6_2_mbox_conf(f6_2))
|
|
reg5 = self.conv6_2_mbox_loc(f6_2)
|
|
|
|
cls6 = tf.nn.softmax(self.conv7_2_mbox_conf(f7_2))
|
|
reg6 = self.conv7_2_mbox_loc(f7_2)
|
|
|
|
# max-out background label
|
|
bmax = tf.maximum(tf.maximum(cls1[:,:,:,0:1], cls1[:,:,:,1:2]), cls1[:,:,:,2:3])
|
|
|
|
cls1 = tf.concat ([bmax, cls1[:,:,:,3:4] ], axis=-1)
|
|
cls1 = tf.nn.softmax(cls1)
|
|
|
|
return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]
|
|
|
|
e = None
|
|
if place_model_on_cpu:
|
|
e = tf.device("/CPU:0")
|
|
|
|
if e is not None: e.__enter__()
|
|
self.model = S3FD()
|
|
self.model.load_weights (model_path)
|
|
if e is not None: e.__exit__(None,None,None)
|
|
|
|
self.model.build_for_run ([ ( tf.float32, nn.get4Dshape (None,None,3) ) ])
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
|
|
return False #pass exception between __enter__ and __exit__ to outter level
|
|
|
|
def extract (self, input_image, is_bgr=True, is_remove_intersects=False):
|
|
|
|
if is_bgr:
|
|
input_image = input_image[:,:,::-1]
|
|
is_bgr = False
|
|
|
|
(h, w, ch) = input_image.shape
|
|
|
|
d = max(w, h)
|
|
scale_to = 640 if d >= 1280 else d / 2
|
|
scale_to = max(64, scale_to)
|
|
|
|
input_scale = d / scale_to
|
|
input_image = cv2.resize (input_image, ( int(w/input_scale), int(h/input_scale) ), interpolation=cv2.INTER_LINEAR)
|
|
|
|
olist = self.model.run ([ input_image[None,...] ] )
|
|
|
|
detected_faces = []
|
|
for ltrb in self.refine (olist):
|
|
l,t,r,b = [ x*input_scale for x in ltrb]
|
|
bt = b-t
|
|
if min(r-l,bt) < 40: #filtering faces < 40pix by any side
|
|
continue
|
|
b += bt*0.1 #enlarging bottom line a bit for 2DFAN-4, because default is not enough covering a chin
|
|
detected_faces.append ( [int(x) for x in (l,t,r,b) ] )
|
|
|
|
#sort by largest area first
|
|
detected_faces = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in detected_faces ]
|
|
detected_faces = sorted(detected_faces, key=operator.itemgetter(1), reverse=True )
|
|
detected_faces = [ x[0] for x in detected_faces]
|
|
|
|
if is_remove_intersects:
|
|
for i in range( len(detected_faces)-1, 0, -1):
|
|
l1,t1,r1,b1 = detected_faces[i]
|
|
l0,t0,r0,b0 = detected_faces[i-1]
|
|
|
|
dx = min(r0, r1) - max(l0, l1)
|
|
dy = min(b0, b1) - max(t0, t1)
|
|
if (dx>=0) and (dy>=0):
|
|
detected_faces.pop(i)
|
|
|
|
return detected_faces
|
|
|
|
def refine(self, olist):
|
|
bboxlist = []
|
|
for i, ((ocls,), (oreg,)) in enumerate ( zip ( olist[::2], olist[1::2] ) ):
|
|
stride = 2**(i + 2) # 4,8,16,32,64,128
|
|
s_d2 = stride / 2
|
|
s_m4 = stride * 4
|
|
|
|
for hindex, windex in zip(*np.where(ocls[...,1] > 0.05)):
|
|
score = ocls[hindex, windex, 1]
|
|
loc = oreg[hindex, windex, :]
|
|
priors = np.array([windex * stride + s_d2, hindex * stride + s_d2, s_m4, s_m4])
|
|
priors_2p = priors[2:]
|
|
box = np.concatenate((priors[:2] + loc[:2] * 0.1 * priors_2p,
|
|
priors_2p * np.exp(loc[2:] * 0.2)) )
|
|
box[:2] -= box[2:] / 2
|
|
box[2:] += box[:2]
|
|
|
|
bboxlist.append([*box, score])
|
|
|
|
bboxlist = np.array(bboxlist)
|
|
if len(bboxlist) == 0:
|
|
bboxlist = np.zeros((1, 5))
|
|
|
|
bboxlist = bboxlist[self.refine_nms(bboxlist, 0.3), :]
|
|
bboxlist = [ x[:-1].astype(np.int) for x in bboxlist if x[-1] >= 0.5]
|
|
return bboxlist
|
|
|
|
def refine_nms(self, dets, thresh):
|
|
keep = list()
|
|
if len(dets) == 0:
|
|
return keep
|
|
|
|
x_1, y_1, x_2, y_2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
|
|
areas = (x_2 - x_1 + 1) * (y_2 - y_1 + 1)
|
|
order = scores.argsort()[::-1]
|
|
|
|
keep = []
|
|
while order.size > 0:
|
|
i = order[0]
|
|
keep.append(i)
|
|
xx_1, yy_1 = np.maximum(x_1[i], x_1[order[1:]]), np.maximum(y_1[i], y_1[order[1:]])
|
|
xx_2, yy_2 = np.minimum(x_2[i], x_2[order[1:]]), np.minimum(y_2[i], y_2[order[1:]])
|
|
|
|
width, height = np.maximum(0.0, xx_2 - xx_1 + 1), np.maximum(0.0, yy_2 - yy_1 + 1)
|
|
ovr = width * height / (areas[i] + areas[order[1:]] - width * height)
|
|
|
|
inds = np.where(ovr <= thresh)[0]
|
|
order = order[inds + 1]
|
|
return keep
|