DeepFaceLab/facelib/LandmarksProcessor.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

691 lines
24 KiB
Python

import colorsys
import math
from enum import IntEnum
import cv2
import numpy as np
import numpy.linalg as npla
from core import imagelib
from core import mathlib
from facelib import FaceType
from core.imagelib import IEPolys
from core.mathlib.umeyama import umeyama
landmarks_2D = np.array([
[ 0.000213256, 0.106454 ], #17
[ 0.0752622, 0.038915 ], #18
[ 0.18113, 0.0187482 ], #19
[ 0.29077, 0.0344891 ], #20
[ 0.393397, 0.0773906 ], #21
[ 0.586856, 0.0773906 ], #22
[ 0.689483, 0.0344891 ], #23
[ 0.799124, 0.0187482 ], #24
[ 0.904991, 0.038915 ], #25
[ 0.98004, 0.106454 ], #26
[ 0.490127, 0.203352 ], #27
[ 0.490127, 0.307009 ], #28
[ 0.490127, 0.409805 ], #29
[ 0.490127, 0.515625 ], #30
[ 0.36688, 0.587326 ], #31
[ 0.426036, 0.609345 ], #32
[ 0.490127, 0.628106 ], #33
[ 0.554217, 0.609345 ], #34
[ 0.613373, 0.587326 ], #35
[ 0.121737, 0.216423 ], #36
[ 0.187122, 0.178758 ], #37
[ 0.265825, 0.179852 ], #38
[ 0.334606, 0.231733 ], #39
[ 0.260918, 0.245099 ], #40
[ 0.182743, 0.244077 ], #41
[ 0.645647, 0.231733 ], #42
[ 0.714428, 0.179852 ], #43
[ 0.793132, 0.178758 ], #44
[ 0.858516, 0.216423 ], #45
[ 0.79751, 0.244077 ], #46
[ 0.719335, 0.245099 ], #47
[ 0.254149, 0.780233 ], #48
[ 0.340985, 0.745405 ], #49
[ 0.428858, 0.727388 ], #50
[ 0.490127, 0.742578 ], #51
[ 0.551395, 0.727388 ], #52
[ 0.639268, 0.745405 ], #53
[ 0.726104, 0.780233 ], #54
[ 0.642159, 0.864805 ], #55
[ 0.556721, 0.902192 ], #56
[ 0.490127, 0.909281 ], #57
[ 0.423532, 0.902192 ], #58
[ 0.338094, 0.864805 ], #59
[ 0.290379, 0.784792 ], #60
[ 0.428096, 0.778746 ], #61
[ 0.490127, 0.785343 ], #62
[ 0.552157, 0.778746 ], #63
[ 0.689874, 0.784792 ], #64
[ 0.553364, 0.824182 ], #65
[ 0.490127, 0.831803 ], #66
[ 0.42689 , 0.824182 ] #67
], dtype=np.float32)
landmarks_2D_new = np.array([
[ 0.000213256, 0.106454 ], #17
[ 0.0752622, 0.038915 ], #18
[ 0.18113, 0.0187482 ], #19
[ 0.29077, 0.0344891 ], #20
[ 0.393397, 0.0773906 ], #21
[ 0.586856, 0.0773906 ], #22
[ 0.689483, 0.0344891 ], #23
[ 0.799124, 0.0187482 ], #24
[ 0.904991, 0.038915 ], #25
[ 0.98004, 0.106454 ], #26
[ 0.490127, 0.203352 ], #27
[ 0.490127, 0.307009 ], #28
[ 0.490127, 0.409805 ], #29
[ 0.490127, 0.515625 ], #30
[ 0.36688, 0.587326 ], #31
[ 0.426036, 0.609345 ], #32
[ 0.490127, 0.628106 ], #33
[ 0.554217, 0.609345 ], #34
[ 0.613373, 0.587326 ], #35
[ 0.121737, 0.216423 ], #36
[ 0.187122, 0.178758 ], #37
[ 0.265825, 0.179852 ], #38
[ 0.334606, 0.231733 ], #39
[ 0.260918, 0.245099 ], #40
[ 0.182743, 0.244077 ], #41
[ 0.645647, 0.231733 ], #42
[ 0.714428, 0.179852 ], #43
[ 0.793132, 0.178758 ], #44
[ 0.858516, 0.216423 ], #45
[ 0.79751, 0.244077 ], #46
[ 0.719335, 0.245099 ], #47
[ 0.254149, 0.780233 ], #48
[ 0.726104, 0.780233 ], #54
], dtype=np.float32)
# 68 point landmark definitions
landmarks_68_pt = { "mouth": (48,68),
"right_eyebrow": (17, 22),
"left_eyebrow": (22, 27),
"right_eye": (36, 42),
"left_eye": (42, 48),
"nose": (27, 36), # missed one point
"jaw": (0, 17) }
landmarks_68_3D = np.array( [
[-73.393523 , -29.801432 , 47.667532 ],
[-72.775014 , -10.949766 , 45.909403 ],
[-70.533638 , 7.929818 , 44.842580 ],
[-66.850058 , 26.074280 , 43.141114 ],
[-59.790187 , 42.564390 , 38.635298 ],
[-48.368973 , 56.481080 , 30.750622 ],
[-34.121101 , 67.246992 , 18.456453 ],
[-17.875411 , 75.056892 , 3.609035 ],
[0.098749 , 77.061286 , -0.881698 ],
[17.477031 , 74.758448 , 5.181201 ],
[32.648966 , 66.929021 , 19.176563 ],
[46.372358 , 56.311389 , 30.770570 ],
[57.343480 , 42.419126 , 37.628629 ],
[64.388482 , 25.455880 , 40.886309 ],
[68.212038 , 6.990805 , 42.281449 ],
[70.486405 , -11.666193 , 44.142567 ],
[71.375822 , -30.365191 , 47.140426 ],
[-61.119406 , -49.361602 , 14.254422 ],
[-51.287588 , -58.769795 , 7.268147 ],
[-37.804800 , -61.996155 , 0.442051 ],
[-24.022754 , -61.033399 , -6.606501 ],
[-11.635713 , -56.686759 , -11.967398 ],
[12.056636 , -57.391033 , -12.051204 ],
[25.106256 , -61.902186 , -7.315098 ],
[38.338588 , -62.777713 , -1.022953 ],
[51.191007 , -59.302347 , 5.349435 ],
[60.053851 , -50.190255 , 11.615746 ],
[0.653940 , -42.193790 , -13.380835 ],
[0.804809 , -30.993721 , -21.150853 ],
[0.992204 , -19.944596 , -29.284036 ],
[1.226783 , -8.414541 , -36.948060 ],
[-14.772472 , 2.598255 , -20.132003 ],
[-7.180239 , 4.751589 , -23.536684 ],
[0.555920 , 6.562900 , -25.944448 ],
[8.272499 , 4.661005 , -23.695741 ],
[15.214351 , 2.643046 , -20.858157 ],
[-46.047290 , -37.471411 , 7.037989 ],
[-37.674688 , -42.730510 , 3.021217 ],
[-27.883856 , -42.711517 , 1.353629 ],
[-19.648268 , -36.754742 , -0.111088 ],
[-28.272965 , -35.134493 , -0.147273 ],
[-38.082418 , -34.919043 , 1.476612 ],
[19.265868 , -37.032306 , -0.665746 ],
[27.894191 , -43.342445 , 0.247660 ],
[37.437529 , -43.110822 , 1.696435 ],
[45.170805 , -38.086515 , 4.894163 ],
[38.196454 , -35.532024 , 0.282961 ],
[28.764989 , -35.484289 , -1.172675 ],
[-28.916267 , 28.612716 , -2.240310 ],
[-17.533194 , 22.172187 , -15.934335 ],
[-6.684590 , 19.029051 , -22.611355 ],
[0.381001 , 20.721118 , -23.748437 ],
[8.375443 , 19.035460 , -22.721995 ],
[18.876618 , 22.394109 , -15.610679 ],
[28.794412 , 28.079924 , -3.217393 ],
[19.057574 , 36.298248 , -14.987997 ],
[8.956375 , 39.634575 , -22.554245 ],
[0.381549 , 40.395647 , -23.591626 ],
[-7.428895 , 39.836405 , -22.406106 ],
[-18.160634 , 36.677899 , -15.121907 ],
[-24.377490 , 28.677771 , -4.785684 ],
[-6.897633 , 25.475976 , -20.893742 ],
[0.340663 , 26.014269 , -22.220479 ],
[8.444722 , 25.326198 , -21.025520 ],
[24.474473 , 28.323008 , -5.712776 ],
[8.449166 , 30.596216 , -20.671489 ],
[0.205322 , 31.408738 , -21.903670 ],
[-7.198266 , 30.844876 , -20.328022 ] ], dtype=np.float32)
FaceType_to_padding_remove_align = {
FaceType.HALF: (0.0, False),
FaceType.MID_FULL: (0.0675, False),
FaceType.FULL: (0.2109375, False),
FaceType.FULL_NO_ALIGN: (0.2109375, True),
FaceType.HEAD: (0.369140625, False),
FaceType.HEAD_NO_ALIGN: (0.369140625, True),
}
def convert_98_to_68(lmrks):
#jaw
result = [ lmrks[0] ]
for i in range(2,16,2):
result += [ ( lmrks[i] + (lmrks[i-1]+lmrks[i+1])/2 ) / 2 ]
result += [ lmrks[16] ]
for i in range(18,32,2):
result += [ ( lmrks[i] + (lmrks[i-1]+lmrks[i+1])/2 ) / 2 ]
result += [ lmrks[32] ]
#eyebrows averaging
result += [ lmrks[33],
(lmrks[34]+lmrks[41])/2,
(lmrks[35]+lmrks[40])/2,
(lmrks[36]+lmrks[39])/2,
(lmrks[37]+lmrks[38])/2,
]
result += [ (lmrks[42]+lmrks[50])/2,
(lmrks[43]+lmrks[49])/2,
(lmrks[44]+lmrks[48])/2,
(lmrks[45]+lmrks[47])/2,
lmrks[46]
]
#nose
result += list ( lmrks[51:60] )
#left eye (from our view)
result += [ lmrks[60],
lmrks[61],
lmrks[63],
lmrks[64],
lmrks[65],
lmrks[67] ]
#right eye
result += [ lmrks[68],
lmrks[69],
lmrks[71],
lmrks[72],
lmrks[73],
lmrks[75] ]
#mouth
result += list ( lmrks[76:96] )
return np.concatenate (result).reshape ( (68,2) )
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0, full_face_align_top=True):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
l_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)]) , mat, True)
l_c = l_p[4]
tb_diag_vec = (l_p[2]-l_p[0]).astype(np.float32)
tb_diag_vec /= npla.norm(tb_diag_vec)
bt_diag_vec = (l_p[1]-l_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
mod = (1.0 / scale)* ( npla.norm(l_p[0]-l_p[2])*(padding*np.sqrt(2.0) + 0.5) )
if not remove_align:
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
np.round( l_c + bt_diag_vec*mod ),
np.round( l_c + tb_diag_vec*mod ) ] )
else:
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
np.round( l_c + bt_diag_vec*mod ),
np.round( l_c + tb_diag_vec*mod ),
np.round( l_c - bt_diag_vec*mod ),
] )
area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
side = np.float32(math.sqrt(area) / 2)
l_t = np.array( [ np.round( l_c + [-side,-side] ),
np.round( l_c + [ side,-side] ),
np.round( l_c + [ side, side] ) ] )
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
mat = cv2.getAffineTransform(l_t,pts2)
#if remove_align:
# bbox = transform_points ( [ (0,0), (0,output_size), (output_size, output_size), (output_size,0) ], mat, True)
# #import code
# #code.interact(local=dict(globals(), **locals()))
# area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
# side = math.sqrt(area) / 2
# center = transform_points ( [(output_size/2,output_size/2)], mat, True)
# pts1 = np.float32(( center+[-side,-side], center+[side,-side], center+[side,-side] ))
# pts2 = np.float32([[0,0],[output_size,0],[0,output_size]])
# mat = cv2.getAffineTransform(pts1,pts2)
return mat
#if full_face_align_top and (face_type == FaceType.FULL or face_type == FaceType.FULL_NO_ALIGN):
# #lmrks2 = expand_eyebrows(image_landmarks)
# #lmrks2_ = transform_points( [ lmrks2[19], lmrks2[24] ], mat, False )
# #y_diff = np.float32( (0,np.min(lmrks2_[:,1])) )
# #y_diff = transform_points( [ np.float32( (0,0) ), y_diff], mat, True)
# #y_diff = y_diff[1]-y_diff[0]
#
# x_diff = np.float32((0,0))
#
# lmrks2_ = transform_points( [ image_landmarks[0], image_landmarks[16] ], mat, False )
# if lmrks2_[0,0] < 0:
# x_diff = lmrks2_[0,0]
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
# x_diff = x_diff[1]-x_diff[0]
# elif lmrks2_[1,0] >= output_size:
# x_diff = lmrks2_[1,0]-(output_size-1)
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
# x_diff = x_diff[1]-x_diff[0]
#
# mat = cv2.getAffineTransform( l_t+y_diff+x_diff ,pts2)
def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
if len(lmrks) != 68:
raise Exception('works only with 68 landmarks')
lmrks = np.array( lmrks.copy(), dtype=np.int )
# #nose
ml_pnt = (lmrks[36] + lmrks[0]) // 2
mr_pnt = (lmrks[16] + lmrks[45]) // 2
# mid points between the mid points and eye
ql_pnt = (lmrks[36] + ml_pnt) // 2
qr_pnt = (lmrks[45] + mr_pnt) // 2
# Top of the eye arrays
bot_l = np.array((ql_pnt, lmrks[36], lmrks[37], lmrks[38], lmrks[39]))
bot_r = np.array((lmrks[42], lmrks[43], lmrks[44], lmrks[45], qr_pnt))
# Eyebrow arrays
top_l = lmrks[17:22]
top_r = lmrks[22:27]
# Adjust eyebrow arrays
lmrks[17:22] = top_l + eyebrows_expand_mod * 0.5 * (top_l - bot_l)
lmrks[22:27] = top_r + eyebrows_expand_mod * 0.5 * (top_r - bot_r)
return lmrks
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None, color=(1,) ):
hull_mask = np.zeros(image_shape[0:2]+( len(color),),dtype=np.float32)
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
r_jaw = (lmrks[0:9], lmrks[17:18])
l_jaw = (lmrks[8:17], lmrks[26:27])
r_cheek = (lmrks[17:20], lmrks[8:9])
l_cheek = (lmrks[24:27], lmrks[8:9])
nose_ridge = (lmrks[19:25], lmrks[8:9],)
r_eye = (lmrks[17:22], lmrks[27:28], lmrks[31:36], lmrks[8:9])
l_eye = (lmrks[22:27], lmrks[27:28], lmrks[31:36], lmrks[8:9])
nose = (lmrks[27:31], lmrks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), color )
if ie_polys is not None:
ie_polys.overlay_mask(hull_mask)
return hull_mask
def alpha_to_color (img_alpha, color):
if len(img_alpha.shape) == 2:
img_alpha = img_alpha[...,None]
h,w,c = img_alpha.shape
result = np.zeros( (h,w, len(color) ), dtype=np.float32 )
result[:,:] = color
return result * img_alpha
def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
h,w,c = image_shape
hull = get_image_hull_mask (image_shape, lmrks, eyebrows_expand_mod, color=(1,) )
result = np.zeros( (h,w,3), dtype=np.float32 )
def process(w,h, data ):
d = {}
cur_lc = 0
all_lines = []
for s, pts_loop_ar in data:
lines = []
for pts, loop in pts_loop_ar:
pts_len = len(pts)
lines.append ( [ [ pts[i], pts[(i+1) % pts_len ] ] for i in range(pts_len - (0 if loop else 1) ) ] )
lines = np.concatenate (lines)
lc = lines.shape[0]
all_lines.append(lines)
d[s] = cur_lc, cur_lc+lc
cur_lc += lc
all_lines = np.concatenate (all_lines, 0)
#calculate signed distance for all points and lines
line_count = all_lines.shape[0]
pts_count = w*h
all_lines = np.repeat ( all_lines[None,...], pts_count, axis=0 ).reshape ( (pts_count*line_count,2,2) )
pts = np.empty( (h,w,line_count,2), dtype=np.float32 )
pts[...,1] = np.arange(h)[:,None,None]
pts[...,0] = np.arange(w)[:,None]
pts = pts.reshape ( (h*w*line_count, -1) )
a = all_lines[:,0,:]
b = all_lines[:,1,:]
pa = pts-a
ba = b-a
ph = np.clip ( np.einsum('ij,ij->i', pa, ba) / np.einsum('ij,ij->i', ba, ba), 0, 1 )
dists = npla.norm ( pa - ba*ph[...,None], axis=1).reshape ( (h,w,line_count) )
def get_dists(name, thickness=0):
s,e = d[name]
result = dists[...,s:e]
if thickness != 0:
result = np.abs(result)-thickness
return np.min (result, axis=-1)
return get_dists
l_eye = lmrks[42:48]
r_eye = lmrks[36:42]
l_brow = lmrks[22:27]
r_brow = lmrks[17:22]
mouth = lmrks[48:60]
up_nose = np.concatenate( (lmrks[27:31], lmrks[33:34]) )
down_nose = lmrks[31:36]
nose = np.concatenate ( (up_nose, down_nose) )
gdf = process ( w,h,
(
('eyes', ((l_eye, True), (r_eye, True)) ),
('brows', ((l_brow, False), (r_brow,False)) ),
('up_nose', ((up_nose, False),) ),
('down_nose', ((down_nose, False),) ),
('mouth', ((mouth, True),) ),
)
)
eyes_fall_dist = w // 32
eyes_thickness = max( w // 64, 1 )
brows_fall_dist = w // 32
brows_thickness = max( w // 256, 1 )
nose_fall_dist = w / 12
nose_thickness = max( w // 96, 1 )
mouth_fall_dist = w // 32
mouth_thickness = max( w // 64, 1 )
eyes_mask = gdf('eyes',eyes_thickness)
eyes_mask = 1-np.clip( eyes_mask/ eyes_fall_dist, 0, 1)
#eyes_mask = np.clip ( 1- ( np.sqrt( np.maximum(eyes_mask,0) ) / eyes_fall_dist ), 0, 1)
#eyes_mask = np.clip ( 1- ( np.cbrt( np.maximum(eyes_mask,0) ) / eyes_fall_dist ), 0, 1)
brows_mask = gdf('brows', brows_thickness)
brows_mask = 1-np.clip( brows_mask / brows_fall_dist, 0, 1)
#brows_mask = np.clip ( 1- ( np.sqrt( np.maximum(brows_mask,0) ) / brows_fall_dist ), 0, 1)
mouth_mask = gdf('mouth', mouth_thickness)
mouth_mask = 1-np.clip( mouth_mask / mouth_fall_dist, 0, 1)
#mouth_mask = np.clip ( 1- ( np.sqrt( np.maximum(mouth_mask,0) ) / mouth_fall_dist ), 0, 1)
def blend(a,b,k):
x = np.clip ( 0.5+0.5*(b-a)/k, 0.0, 1.0 )
return (a-b)*x+b - k*x*(1.0-x)
#nose_mask = (a-b)*x+b - k*x*(1.0-x)
#nose_mask = np.minimum (up_nose_mask , down_nose_mask )
#nose_mask = 1-np.clip( nose_mask / nose_fall_dist, 0, 1)
nose_mask = blend ( gdf('up_nose', nose_thickness), gdf('down_nose', nose_thickness), nose_thickness*3 )
nose_mask = 1-np.clip( nose_mask / nose_fall_dist, 0, 1)
up_nose_mask = gdf('up_nose', nose_thickness)
up_nose_mask = 1-np.clip( up_nose_mask / nose_fall_dist, 0, 1)
#up_nose_mask = np.clip ( 1- ( np.cbrt( np.maximum(up_nose_mask,0) ) / nose_fall_dist ), 0, 1)
down_nose_mask = gdf('down_nose', nose_thickness)
down_nose_mask = 1-np.clip( down_nose_mask / nose_fall_dist, 0, 1)
#down_nose_mask = np.clip ( 1- ( np.cbrt( np.maximum(down_nose_mask,0) ) / nose_fall_dist ), 0, 1)
#nose_mask = np.clip( up_nose_mask + down_nose_mask, 0, 1 )
#nose_mask /= np.max(nose_mask)
#nose_mask = np.maximum (up_nose_mask , down_nose_mask )
#nose_mask = down_nose_mask
#nose_mask = np.zeros_like(nose_mask)
eyes_mask = eyes_mask * (1-mouth_mask)
nose_mask = nose_mask * (1-eyes_mask)
hull_mask = hull[...,0].copy()
hull_mask = hull_mask * (1-eyes_mask) * (1-brows_mask) * (1-nose_mask) * (1-mouth_mask)
#eyes_mask = eyes_mask * (1-nose_mask)
mouth_mask= mouth_mask * (1-nose_mask)
brows_mask = brows_mask * (1-nose_mask)* (1-eyes_mask )
hull_mask = alpha_to_color(hull_mask, (0,1,0) )
eyes_mask = alpha_to_color(eyes_mask, (1,0,0) )
brows_mask = alpha_to_color(brows_mask, (0,0,1) )
nose_mask = alpha_to_color(nose_mask, (0,1,1) )
mouth_mask = alpha_to_color(mouth_mask, (0,0,1) )
#nose_mask = np.maximum( up_nose_mask, down_nose_mask )
result = hull_mask + mouth_mask+ nose_mask + brows_mask + eyes_mask
result *= hull
#result = np.clip (result, 0, 1)
return result
def get_image_eye_mask (image_shape, image_landmarks):
if len(image_landmarks) != 68:
raise Exception('get_image_eye_mask works only with 68 landmarks')
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[36:42]), (1,) )
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[42:48]), (1,) )
return hull_mask
def blur_image_hull_mask (hull_mask):
maxregion = np.argwhere(hull_mask==1.0)
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx;
leny = maxy - miny;
masky = int(minx+(lenx//2))
maskx = int(miny+(leny//2))
lowest_len = min (lenx, leny)
ero = int( lowest_len * 0.085 )
blur = int( lowest_len * 0.10 )
hull_mask = cv2.erode(hull_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
hull_mask = cv2.blur(hull_mask, (blur, blur) )
hull_mask = np.expand_dims (hull_mask,-1)
return hull_mask
mirror_idxs = [
[0,16],
[1,15],
[2,14],
[3,13],
[4,12],
[5,11],
[6,10],
[7,9],
[17,26],
[18,25],
[19,24],
[20,23],
[21,22],
[36,45],
[37,44],
[38,43],
[39,42],
[40,47],
[41,46],
[31,35],
[32,34],
[50,52],
[49,53],
[48,54],
[59,55],
[58,56],
[67,65],
[60,64],
[61,63] ]
def mirror_landmarks (landmarks, val):
result = landmarks.copy()
for idx in mirror_idxs:
result [ idx ] = result [ idx[::-1] ]
result[:,0] = val - result[:,0] - 1
return result
def draw_landmarks (image, image_landmarks, color=(0,255,0), transparent_mask=False, ie_polys=None):
if len(image_landmarks) != 68:
raise Exception('get_image_eye_mask works only with 68 landmarks')
int_lmrks = np.array(image_landmarks, dtype=np.int)
jaw = int_lmrks[slice(*landmarks_68_pt["jaw"])]
right_eyebrow = int_lmrks[slice(*landmarks_68_pt["right_eyebrow"])]
left_eyebrow = int_lmrks[slice(*landmarks_68_pt["left_eyebrow"])]
mouth = int_lmrks[slice(*landmarks_68_pt["mouth"])]
right_eye = int_lmrks[slice(*landmarks_68_pt["right_eye"])]
left_eye = int_lmrks[slice(*landmarks_68_pt["left_eye"])]
nose = int_lmrks[slice(*landmarks_68_pt["nose"])]
# open shapes
cv2.polylines(image, tuple(np.array([v]) for v in ( right_eyebrow, jaw, left_eyebrow, np.concatenate((nose, [nose[-6]])) )),
False, color, lineType=cv2.LINE_AA)
# closed shapes
cv2.polylines(image, tuple(np.array([v]) for v in (right_eye, left_eye, mouth)),
True, color, lineType=cv2.LINE_AA)
# the rest of the cicles
for x, y in np.concatenate((right_eyebrow, left_eyebrow, mouth, right_eye, left_eye, nose), axis=0):
cv2.circle(image, (x, y), 1, color, 1, lineType=cv2.LINE_AA)
# jaw big circles
for x, y in jaw:
cv2.circle(image, (x, y), 2, color, lineType=cv2.LINE_AA)
if transparent_mask:
mask = get_image_hull_mask (image.shape, image_landmarks, ie_polys=ie_polys)
image[...] = ( image * (1-mask) + image * mask / 2 )[...]
def draw_rect_landmarks (image, rect, image_landmarks, face_size, face_type, transparent_mask=False, ie_polys=None, landmarks_color=(0,255,0)):
draw_landmarks(image, image_landmarks, color=landmarks_color, transparent_mask=transparent_mask, ie_polys=ie_polys)
imagelib.draw_rect (image, rect, (255,0,0), 2 )
image_to_face_mat = get_transform_mat (image_landmarks, face_size, face_type)
points = transform_points ( [ (0,0), (0,face_size-1), (face_size-1, face_size-1), (face_size-1,0) ], image_to_face_mat, True)
imagelib.draw_polygon (image, points, (0,0,255), 2)
points = transform_points ( [ ( int(face_size*0.05), 0), ( int(face_size*0.1), int(face_size*0.1) ), ( 0, int(face_size*0.1) ) ], image_to_face_mat, True)
imagelib.draw_polygon (image, points, (0,0,255), 2)
def calc_face_pitch(landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array (landmarks)
t = ( (landmarks[6][1]-landmarks[8][1]) + (landmarks[10][1]-landmarks[8][1]) ) / 2.0
b = landmarks[8][1]
return float(b-t)
def calc_face_yaw(landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array (landmarks)
l = ( (landmarks[27][0]-landmarks[0][0]) + (landmarks[28][0]-landmarks[1][0]) + (landmarks[29][0]-landmarks[2][0]) ) / 3.0
r = ( (landmarks[16][0]-landmarks[27][0]) + (landmarks[15][0]-landmarks[28][0]) + (landmarks[14][0]-landmarks[29][0]) ) / 3.0
return float(r-l)
def estimate_pitch_yaw_roll(aligned_256px_landmarks):
"""
returns pitch,yaw,roll [-pi...+pi]
"""
shape = (256,256)
focal_length = shape[1]
camera_center = (shape[1] / 2, shape[0] / 2)
camera_matrix = np.array(
[[focal_length, 0, camera_center[0]],
[0, focal_length, camera_center[1]],
[0, 0, 1]], dtype=np.float32)
(_, rotation_vector, translation_vector) = cv2.solvePnP(
landmarks_68_3D,
aligned_256px_landmarks.astype(np.float32),
camera_matrix,
np.zeros((4, 1)) )
pitch, yaw, roll = mathlib.rotationMatrixToEulerAngles( cv2.Rodrigues(rotation_vector)[0] )
pitch = np.clip ( pitch, -math.pi, math.pi )
yaw = np.clip ( yaw , -math.pi, math.pi )
roll = np.clip ( roll, -math.pi, math.pi )
return -pitch, yaw, roll