mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
116 lines
No EOL
4.9 KiB
Python
116 lines
No EOL
4.9 KiB
Python
import copy
|
|
|
|
def initialize_optimizers(nn):
|
|
tf = nn.tf
|
|
from tensorflow.python.ops import state_ops, control_flow_ops
|
|
|
|
class TFBaseOptimizer(nn.Saveable):
|
|
def __init__(self, name=None):
|
|
super().__init__(name=name)
|
|
|
|
def tf_clip_norm(self, g, c, n):
|
|
"""Clip the gradient `g` if the L2 norm `n` exceeds `c`.
|
|
# Arguments
|
|
g: Tensor, the gradient tensor
|
|
c: float >= 0. Gradients will be clipped
|
|
when their L2 norm exceeds this value.
|
|
n: Tensor, actual norm of `g`.
|
|
# Returns
|
|
Tensor, the gradient clipped if required.
|
|
"""
|
|
if c <= 0: # if clipnorm == 0 no need to add ops to the graph
|
|
return g
|
|
|
|
condition = n >= c
|
|
then_expression = tf.scalar_mul(c / n, g)
|
|
else_expression = g
|
|
|
|
# saving the shape to avoid converting sparse tensor to dense
|
|
if isinstance(then_expression, tf.Tensor):
|
|
g_shape = copy.copy(then_expression.get_shape())
|
|
elif isinstance(then_expression, tf.IndexedSlices):
|
|
g_shape = copy.copy(then_expression.dense_shape)
|
|
if condition.dtype != tf.bool:
|
|
condition = tf.cast(condition, 'bool')
|
|
g = tf.cond(condition,
|
|
lambda: then_expression,
|
|
lambda: else_expression)
|
|
if isinstance(then_expression, tf.Tensor):
|
|
g.set_shape(g_shape)
|
|
elif isinstance(then_expression, tf.IndexedSlices):
|
|
g._dense_shape = g_shape
|
|
|
|
return g
|
|
nn.TFBaseOptimizer = TFBaseOptimizer
|
|
|
|
class TFRMSpropOptimizer(TFBaseOptimizer):
|
|
def __init__(self, lr=0.001, rho=0.9, lr_dropout=1.0, epsilon=1e-7, clipnorm=0.0, name=None):
|
|
super().__init__(name=name)
|
|
|
|
if name is None:
|
|
raise ValueError('name must be defined.')
|
|
|
|
self.lr_dropout = lr_dropout
|
|
self.clipnorm = clipnorm
|
|
|
|
with tf.device('/CPU:0') :
|
|
with tf.variable_scope(self.name):
|
|
self.lr = tf.Variable (lr, name="lr")
|
|
self.rho = tf.Variable (rho, name="rho")
|
|
self.epsilon = tf.Variable (epsilon, name="epsilon")
|
|
self.iterations = tf.Variable(0, dtype=tf.int64, name='iters')
|
|
|
|
self.accumulators = []
|
|
self.accumulator_counter = 0
|
|
self.accumulators_dict = {}
|
|
self.lr_rnds_dict = {}
|
|
|
|
def get_weights(self):
|
|
return [self.lr, self.rho, self.epsilon, self.iterations] + self.accumulators
|
|
|
|
def initialize_variables(self, trainable_weights, vars_on_cpu=True):
|
|
# Initialize here all trainable variables used in training
|
|
e = tf.device('/CPU:0') if vars_on_cpu else None
|
|
if e: e.__enter__()
|
|
with tf.variable_scope(self.name):
|
|
accumulators = [ tf.get_variable ( f'acc_{i+self.accumulator_counter}', v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False)
|
|
for (i, v ) in enumerate(trainable_weights) ]
|
|
|
|
self.accumulators_dict.update ( { v.name : acc for v,acc in zip(trainable_weights,accumulators) } )
|
|
self.accumulators += accumulators
|
|
self.accumulator_counter += len(trainable_weights)
|
|
|
|
if self.lr_dropout != 1.0:
|
|
lr_rnds = [ nn.tf_random_binomial( v.shape, p=self.lr_dropout, dtype=v.dtype) for v in trainable_weights ]
|
|
self.lr_rnds_dict.update ( { v.name : rnd for v,rnd in zip(trainable_weights,lr_rnds) } )
|
|
if e: e.__exit__(None, None, None)
|
|
|
|
def get_update_op(self, grads_vars):
|
|
updates = []
|
|
|
|
if self.clipnorm > 0.0:
|
|
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars]))
|
|
updates += [ state_ops.assign_add( self.iterations, 1) ]
|
|
for i, (g,v) in enumerate(grads_vars):
|
|
if self.clipnorm > 0.0:
|
|
g = self.tf_clip_norm(g, self.clipnorm, norm)
|
|
|
|
a = self.accumulators_dict[v.name]
|
|
|
|
rho = tf.cast(self.rho, a.dtype)
|
|
new_a = rho * a + (1. - rho) * tf.square(g)
|
|
|
|
lr = tf.cast(self.lr, a.dtype)
|
|
epsilon = tf.cast(self.epsilon, a.dtype)
|
|
|
|
v_diff = - lr * g / (tf.sqrt(new_a) + epsilon)
|
|
if self.lr_dropout != 1.0:
|
|
lr_rnd = self.lr_rnds_dict[v.name]
|
|
v_diff *= lr_rnd
|
|
new_v = v + v_diff
|
|
|
|
updates.append (state_ops.assign(a, new_a))
|
|
updates.append (state_ops.assign(v, new_v))
|
|
|
|
return control_flow_ops.group ( *updates, name=self.name+'_updates')
|
|
nn.TFRMSpropOptimizer = TFRMSpropOptimizer |