mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
205 lines
No EOL
7.4 KiB
Python
205 lines
No EOL
7.4 KiB
Python
import sys
|
|
import ctypes
|
|
import os
|
|
|
|
class Device(object):
|
|
def __init__(self, index, name, total_mem, free_mem, cc=0):
|
|
self.index = index
|
|
self.name = name
|
|
self.cc = cc
|
|
self.total_mem = total_mem
|
|
self.total_mem_gb = total_mem / 1024**3
|
|
self.free_mem = free_mem
|
|
self.free_mem_gb = free_mem / 1024**3
|
|
|
|
def __str__(self):
|
|
return f"[{self.index}]:[{self.name}][{self.free_mem_gb:.3}/{self.total_mem_gb :.3}]"
|
|
|
|
class Devices(object):
|
|
all_devices = None
|
|
|
|
def __init__(self, devices):
|
|
self.devices = devices
|
|
|
|
def __len__(self):
|
|
return len(self.devices)
|
|
|
|
def __getitem__(self, key):
|
|
result = self.devices[key]
|
|
if isinstance(key, slice):
|
|
return Devices(result)
|
|
return result
|
|
|
|
def __iter__(self):
|
|
for device in self.devices:
|
|
yield device
|
|
|
|
def get_best_device(self):
|
|
result = None
|
|
idx_mem = 0
|
|
for device in self.devices:
|
|
mem = device.total_mem
|
|
if mem > idx_mem:
|
|
result = device
|
|
idx_mem = mem
|
|
return result
|
|
|
|
def get_worst_device(self):
|
|
result = None
|
|
idx_mem = sys.maxsize
|
|
for device in self.devices:
|
|
mem = device.total_mem
|
|
if mem < idx_mem:
|
|
result = device
|
|
idx_mem = mem
|
|
return result
|
|
|
|
def get_device_by_index(self, idx):
|
|
for device in self.devices:
|
|
if device.index == idx:
|
|
return device
|
|
return None
|
|
|
|
def get_devices_from_index_list(self, idx_list):
|
|
result = []
|
|
for device in self.devices:
|
|
if device.index in idx_list:
|
|
result += [device]
|
|
return Devices(result)
|
|
|
|
def get_equal_devices(self, device):
|
|
device_name = device.name
|
|
result = []
|
|
for device in self.devices:
|
|
if device.name == device_name:
|
|
result.append (device)
|
|
return Devices(result)
|
|
|
|
def get_devices_at_least_mem(self, totalmemsize_gb):
|
|
result = []
|
|
for device in self.devices:
|
|
if device.total_mem >= totalmemsize_gb*(1024**3):
|
|
result.append (device)
|
|
return Devices(result)
|
|
|
|
@staticmethod
|
|
def initialize_main_env():
|
|
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
|
|
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
|
|
for libname in libnames:
|
|
try:
|
|
cuda = ctypes.CDLL(libname)
|
|
except:
|
|
continue
|
|
else:
|
|
break
|
|
else:
|
|
return Devices([])
|
|
|
|
nGpus = ctypes.c_int()
|
|
name = b' ' * 200
|
|
cc_major = ctypes.c_int()
|
|
cc_minor = ctypes.c_int()
|
|
freeMem = ctypes.c_size_t()
|
|
totalMem = ctypes.c_size_t()
|
|
|
|
result = ctypes.c_int()
|
|
device = ctypes.c_int()
|
|
context = ctypes.c_void_p()
|
|
error_str = ctypes.c_char_p()
|
|
|
|
devices = []
|
|
|
|
if cuda.cuInit(0) == 0 and \
|
|
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
|
|
for i in range(nGpus.value):
|
|
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
|
|
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
|
|
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
|
|
continue
|
|
|
|
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
|
|
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
|
|
cc = cc_major.value * 10 + cc_minor.value
|
|
if cc >= min_cc:
|
|
devices.append ( {'name' : name.split(b'\0', 1)[0].decode(),
|
|
'total_mem' : totalMem.value,
|
|
'free_mem' : freeMem.value,
|
|
'cc' : cc
|
|
})
|
|
cuda.cuCtxDetach(context)
|
|
|
|
os.environ['NN_DEVICES_INITIALIZED'] = '1'
|
|
os.environ['NN_DEVICES_COUNT'] = str(len(devices))
|
|
for i, device in enumerate(devices):
|
|
os.environ[f'NN_DEVICE_{i}_NAME'] = device['name']
|
|
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
|
|
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
|
|
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
|
|
|
|
@staticmethod
|
|
def getDevices():
|
|
if Devices.all_devices is None:
|
|
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
|
|
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
|
|
devices = []
|
|
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
|
|
devices.append ( Device(index=i,
|
|
name=os.environ[f'NN_DEVICE_{i}_NAME'],
|
|
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
|
|
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']),
|
|
cc=int(os.environ[f'NN_DEVICE_{i}_CC']) ))
|
|
Devices.all_devices = Devices(devices)
|
|
|
|
return Devices.all_devices
|
|
|
|
"""
|
|
if Devices.all_devices is None:
|
|
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
|
|
|
|
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
|
|
for libname in libnames:
|
|
try:
|
|
cuda = ctypes.CDLL(libname)
|
|
except:
|
|
continue
|
|
else:
|
|
break
|
|
else:
|
|
return Devices([])
|
|
|
|
nGpus = ctypes.c_int()
|
|
name = b' ' * 200
|
|
cc_major = ctypes.c_int()
|
|
cc_minor = ctypes.c_int()
|
|
freeMem = ctypes.c_size_t()
|
|
totalMem = ctypes.c_size_t()
|
|
|
|
result = ctypes.c_int()
|
|
device = ctypes.c_int()
|
|
context = ctypes.c_void_p()
|
|
error_str = ctypes.c_char_p()
|
|
|
|
devices = []
|
|
|
|
if cuda.cuInit(0) == 0 and \
|
|
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
|
|
for i in range(nGpus.value):
|
|
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
|
|
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
|
|
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
|
|
continue
|
|
|
|
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
|
|
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
|
|
cc = cc_major.value * 10 + cc_minor.value
|
|
if cc >= min_cc:
|
|
devices.append ( Device(index=i,
|
|
name=name.split(b'\0', 1)[0].decode(),
|
|
total_mem=totalMem.value,
|
|
free_mem=freeMem.value,
|
|
cc=cc) )
|
|
cuda.cuCtxDetach(context)
|
|
Devices.all_devices = Devices(devices)
|
|
return Devices.all_devices
|
|
""" |