DeepFaceLab/core/joblib/SubprocessGenerator.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

54 lines
1.6 KiB
Python

import queue as Queue
import multiprocessing
class SubprocessGenerator(object):
def __init__(self, generator_func, user_param=None, prefetch=2, start_now=True):
super().__init__()
self.prefetch = prefetch
self.generator_func = generator_func
self.user_param = user_param
self.sc_queue = multiprocessing.Queue()
self.cs_queue = multiprocessing.Queue()
self.p = None
if start_now:
self._start()
def _start(self):
if self.p == None:
user_param = self.user_param
self.user_param = None
self.p = multiprocessing.Process(target=self.process_func, args=(user_param,) )
self.p.daemon = True
self.p.start()
def process_func(self, user_param):
self.generator_func = self.generator_func(user_param)
while True:
while self.prefetch > -1:
try:
gen_data = next (self.generator_func)
except StopIteration:
self.cs_queue.put (None)
return
self.cs_queue.put (gen_data)
self.prefetch -= 1
self.sc_queue.get()
self.prefetch += 1
def __iter__(self):
return self
def __getstate__(self):
self_dict = self.__dict__.copy()
del self_dict['p']
return self_dict
def __next__(self):
self._start()
gen_data = self.cs_queue.get()
if gen_data is None:
self.p.terminate()
self.p.join()
raise StopIteration()
self.sc_queue.put (1)
return gen_data