DeepFaceLab/samplelib/SampleGeneratorFaceTemporal.py
Colombo 7386a9d6fd optimized face sample generator, CPU load is significantly reduced
SAEHD:

added new option
GAN power 0.0 .. 10.0
	Train the network in Generative Adversarial manner.
	Forces the neural network to learn small details of the face.
	You can enable/disable this option at any time,
	but better to enable it when the network is trained enough.
	Typical value is 1.0
	GAN power with pretrain mode will not work.

Example of enabling GAN on 81k iters +5k iters
https://i.imgur.com/OdXHLhU.jpg
https://i.imgur.com/CYAJmJx.jpg

dfhd: default Decoder dimensions are now 48
the preview for 256 res is now correctly displayed

fixed model naming/renaming/removing

Improvements for those involved in post-processing in AfterEffects:

Codec is reverted back to x264 in order to properly use in AfterEffects and video players.

Merger now always outputs the mask to workspace\data_dst\merged_mask

removed raw modes except raw-rgb
raw-rgb mode now outputs selected face mask_mode (before square mask)

'export alpha mask' button is replaced by 'show alpha mask'.
You can view the alpha mask without recompute the frames.

8) 'merged *.bat' now also output 'result_mask.' video file.
8) 'merged lossless' now uses x264 lossless codec (before PNG codec)
result_mask video file is always lossless.

Thus you can use result_mask video file as mask layer in the AfterEffects.
2020-01-28 12:24:45 +04:00

88 lines
3.2 KiB
Python

import multiprocessing
import pickle
import time
import traceback
import cv2
import numpy as np
from core import mplib
from core.joblib import SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
SampleType)
class SampleGeneratorFaceTemporal(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
generators_count=2,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.temporal_image_count = temporal_image_count
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
if self.debug:
self.generators_count = 1
else:
self.generators_count = generators_count
samples = SampleLoader.load (SampleType.FACE_TEMPORAL_SORTED, self.samples_path)
samples_len = len(samples)
if samples_len == 0:
raise ValueError('No training data provided.')
mult_max = 1
l = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
index_host = mplib.IndexHost(l+1)
pickled_samples = pickle.dumps(samples, 4)
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param):
mult_max = 1
bs = self.batch_size
pickled_samples, index_host = param
samples = pickle.loads(pickled_samples)
while True:
batches = None
indexes = index_host.multi_get(bs)
for n_batch in range(self.batch_size):
idx = indexes[n_batch]
temporal_samples = []
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:
temporal_samples += SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)[0]
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(temporal_samples)) ]
for i in range(len(temporal_samples)):
batches[i].append ( temporal_samples[i] )
yield [ np.array(batch) for batch in batches]