DeepFaceLab/mainscripts/Converter.py
iperov 72ba6b103c added support of AMD videocards
added Intel's plaidML backend to use OpenCL engine. Check new requirements.
smart choosing of backend in device.py
env var 'force_plaidML' can be choosed to forced using plaidML
all tf functions transferred to pure keras
MTCNN transferred to pure keras, but it works slow on plaidML (forced to CPU in this case)
default batch size for all models and VRAMs now 4, feel free to adjust it on your own
SAE: default style options now ZERO, because there are no best values for all scenes, set them on your own.
SAE: return back option pixel_loss, feel free to enable it on your own.
SAE: added option multiscale_decoder default is true, but you can disable it to get 100% same as H,DF,LIAEF model behaviour.
fix converter output to .png
added linux fork reference to doc/doc_build_and_repository_info.md
2019-02-19 17:33:12 +04:00

358 lines
14 KiB
Python

import sys
import os
import traceback
from pathlib import Path
from utils import Path_utils
import cv2
from tqdm import tqdm
from utils.DFLPNG import DFLPNG
from utils.DFLJPG import DFLJPG
from utils.cv2_utils import *
from utils import image_utils
import shutil
import numpy as np
import time
import multiprocessing
from models import ConverterBase
class model_process_predictor(object):
def __init__(self, sq, cq, lock):
self.sq = sq
self.cq = cq
self.lock = lock
def __call__(self, face):
self.lock.acquire()
self.sq.put ( {'op': 'predict', 'face' : face} )
while True:
if not self.cq.empty():
obj = self.cq.get()
obj_op = obj['op']
if obj_op == 'predict_result':
self.lock.release()
return obj['result']
time.sleep(0.005)
def model_process(stdin_fd, model_name, model_dir, in_options, sq, cq):
sys.stdin = os.fdopen(stdin_fd)
try:
model_path = Path(model_dir)
import models
model = models.import_model(model_name)(model_path, **in_options)
converter = model.get_converter(**in_options)
converter.dummy_predict()
cq.put ( {'op':'init', 'converter' : converter.copy_and_set_predictor( None ) } )
while True:
while not sq.empty():
obj = sq.get()
obj_op = obj['op']
if obj_op == 'predict':
result = converter.predictor ( obj['face'] )
cq.put ( {'op':'predict_result', 'result':result} )
time.sleep(0.005)
except Exception as e:
print ( 'Error: %s' % (str(e)))
traceback.print_exc()
from utils.SubprocessorBase import SubprocessorBase
class ConvertSubprocessor(SubprocessorBase):
#override
def __init__(self, converter, input_path_image_paths, output_path, alignments, debug = False, **in_options):
super().__init__('Converter', 86400 if debug == True else 60)
self.converter = converter
self.input_path_image_paths = input_path_image_paths
self.output_path = output_path
self.alignments = alignments
self.debug = debug
self.in_options = in_options
self.input_data = self.input_path_image_paths
self.files_processed = 0
self.faces_processed = 0
#override
def process_info_generator(self):
r = [0] if self.debug else range( min(multiprocessing.cpu_count(), 6) )
for i in r:
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'converter' : self.converter,
'output_dir' : str(self.output_path),
'alignments' : self.alignments,
'debug': self.debug,
'in_options': self.in_options
}
#override
def get_no_process_started_message(self):
return 'Unable to start CPU processes.'
#override
def onHostGetProgressBarDesc(self):
return "Converting"
#override
def onHostGetProgressBarLen(self):
return len (self.input_data)
#override
def onHostGetData(self, host_dict):
if len (self.input_data) > 0:
return self.input_data.pop(0)
return None
#override
def onHostDataReturn (self, host_dict, data):
self.input_data.insert(0, data)
#overridable
def onClientGetDataName (self, data):
#return string identificator of your data
return data
#override
def onClientInitialize(self, client_dict):
print ('Running on %s.' % (client_dict['device_name']) )
self.device_idx = client_dict['device_idx']
self.device_name = client_dict['device_name']
self.converter = client_dict['converter']
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.alignments = client_dict['alignments']
self.debug = client_dict['debug']
from nnlib import nnlib
#model process ate all GPU mem,
#so we cannot use GPU for any TF operations in converter processes (for example image_utils.TFLabConverter)
#therefore forcing active_DeviceConfig to CPU only
nnlib.active_DeviceConfig = nnlib.DeviceConfig (cpu_only=True)
return None
#override
def onClientFinalize(self):
pass
#override
def onClientProcessData(self, data):
filename_path = Path(data)
files_processed = 1
faces_processed = 0
output_filename_path = self.output_path / (filename_path.stem + '.png')
if self.converter.get_mode() == ConverterBase.MODE_FACE and filename_path.stem not in self.alignments.keys():
if not self.debug:
print ( 'no faces found for %s, copying without faces' % (filename_path.name) )
shutil.copy ( str(filename_path), str(output_filename_path) )
else:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
if self.converter.get_mode() == ConverterBase.MODE_IMAGE:
image = self.converter.convert_image(image, None, self.debug)
if self.debug:
for img in image:
cv2.imshow ('Debug convert', img )
cv2.waitKey(0)
faces_processed = 1
elif self.converter.get_mode() == ConverterBase.MODE_IMAGE_WITH_LANDMARKS:
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path), throw_on_no_embedded_data=True )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path), throw_on_no_embedded_data=True )
else:
raise Exception ("%s is not a dfl image file" % (filename_path.name) )
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
for img in image:
cv2.imshow ('Debug convert', img )
cv2.waitKey(0)
faces_processed = 1
elif self.converter.get_mode() == ConverterBase.MODE_FACE:
faces = self.alignments[filename_path.stem]
for face_num, image_landmarks in enumerate(faces):
try:
if self.debug:
print ( '\nConverting face_num [%d] in file [%s]' % (face_num, filename_path) )
image = self.converter.convert_face(image, image_landmarks, self.debug)
if self.debug:
for img in image:
cv2.imshow ('Debug convert', (img*255).astype(np.uint8) )
cv2.waitKey(0)
except Exception as e:
print ( 'Error while converting face_num [%d] in file [%s]: %s' % (face_num, filename_path, str(e)) )
traceback.print_exc()
faces_processed = len(faces)
if not self.debug:
cv2_imwrite (str(output_filename_path), (image*255).astype(np.uint8) )
return (files_processed, faces_processed)
#override
def onHostResult (self, host_dict, data, result):
self.files_processed += result[0]
self.faces_processed += result[1]
return 1
#override
def onFinalizeAndGetResult(self):
return self.files_processed, self.faces_processed
def main (input_dir, output_dir, model_dir, model_name, aligned_dir=None, **in_options):
print ("Running converter.\r\n")
debug = in_options['debug']
try:
input_path = Path(input_dir)
output_path = Path(output_dir)
model_path = Path(model_dir)
if not input_path.exists():
print('Input directory not found. Please ensure it exists.')
return
if output_path.exists():
for filename in Path_utils.get_image_paths(output_path):
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if not model_path.exists():
print('Model directory not found. Please ensure it exists.')
return
model_sq = multiprocessing.Queue()
model_cq = multiprocessing.Queue()
model_lock = multiprocessing.Lock()
model_p = multiprocessing.Process(target=model_process, args=( sys.stdin.fileno(), model_name, model_dir, in_options, model_sq, model_cq))
model_p.start()
while True:
if not model_cq.empty():
obj = model_cq.get()
obj_op = obj['op']
if obj_op == 'init':
converter = obj['converter']
break
alignments = None
if converter.get_mode() == ConverterBase.MODE_FACE:
if aligned_dir is None:
print('Aligned directory not found. Please ensure it exists.')
return
aligned_path = Path(aligned_dir)
if not aligned_path.exists():
print('Aligned directory not found. Please ensure it exists.')
return
alignments = {}
aligned_path_image_paths = Path_utils.get_image_paths(aligned_path)
for filepath in tqdm(aligned_path_image_paths, desc="Collecting alignments", ascii=True ):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath), print_on_no_embedded_data=True )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath), print_on_no_embedded_data=True )
else:
print ("%s is not a dfl image file" % (filepath.name) )
source_filename_stem = Path( dflimg.get_source_filename() ).stem
if source_filename_stem not in alignments.keys():
alignments[ source_filename_stem ] = []
alignments[ source_filename_stem ].append (dflimg.get_source_landmarks())
#interpolate landmarks
#from facelib import LandmarksProcessor
#from facelib import FaceType
#a = sorted(alignments.keys())
#a_len = len(a)
#
#box_pts = 3
#box = np.ones(box_pts)/box_pts
#for i in range( a_len ):
# if i >= box_pts and i <= a_len-box_pts-1:
# af0 = alignments[ a[i] ][0] ##first face
# m0 = LandmarksProcessor.get_transform_mat (af0, 256, face_type=FaceType.FULL)
#
# points = []
#
# for j in range(-box_pts, box_pts+1):
# af = alignments[ a[i+j] ][0] ##first face
# m = LandmarksProcessor.get_transform_mat (af, 256, face_type=FaceType.FULL)
# p = LandmarksProcessor.transform_points (af, m)
# points.append (p)
#
# points = np.array(points)
# points_len = len(points)
# t_points = np.transpose(points, [1,0,2])
#
# p1 = np.array ( [ int(np.convolve(x[:,0], box, mode='same')[points_len//2]) for x in t_points ] )
# p2 = np.array ( [ int(np.convolve(x[:,1], box, mode='same')[points_len//2]) for x in t_points ] )
#
# new_points = np.concatenate( [np.expand_dims(p1,-1),np.expand_dims(p2,-1)], -1 )
#
# alignments[ a[i] ][0] = LandmarksProcessor.transform_points (new_points, m0, True).astype(np.int32)
files_processed, faces_processed = ConvertSubprocessor (
converter = converter.copy_and_set_predictor( model_process_predictor(model_sq,model_cq,model_lock) ),
input_path_image_paths = Path_utils.get_image_paths(input_path),
output_path = output_path,
alignments = alignments,
**in_options ).process()
model_p.terminate()
'''
if model_name == 'AVATAR':
output_path_image_paths = Path_utils.get_image_paths(output_path)
last_ok_frame = -1
for filename in output_path_image_paths:
filename_path = Path(filename)
stem = Path(filename).stem
try:
frame = int(stem)
except:
raise Exception ('Aligned avatars must be created from indexed sequence files.')
if frame-last_ok_frame > 1:
start = last_ok_frame + 1
end = frame - 1
print ("Filling gaps: [%d...%d]" % (start, end) )
for i in range (start, end+1):
shutil.copy ( str(filename), str( output_path / ('%.5d%s' % (i, filename_path.suffix )) ) )
last_ok_frame = frame
'''
except Exception as e:
print ( 'Error: %s' % (str(e)))
traceback.print_exc()