DeepFaceLab/nnlib/__init__.py
2018-06-04 17:12:43 +04:00

198 lines
No EOL
7.6 KiB
Python

def tf_image_histogram (tf, input):
x = input
x += 1 / 255.0
output = []
for i in range(256, 0, -1):
v = i / 255.0
y = (x - v) * 1000
y = tf.clip_by_value (y, -1.0, 0.0) + 1
output.append ( tf.reduce_sum (y) )
x -= y*v
return tf.stack ( output[::-1] )
def tf_dssim(tf, t1, t2):
return (1.0 - tf.image.ssim (t1, t2, 1.0)) / 2.0
def tf_ssim(tf, t1, t2):
return tf.image.ssim (t1, t2, 1.0)
def DSSIMMaskLossClass(tf):
class DSSIMMaskLoss(object):
def __init__(self, mask_list, is_tanh=False):
self.mask_list = mask_list
self.is_tanh = is_tanh
def __call__(self,y_true, y_pred):
total_loss = None
for mask in self.mask_list:
if not self.is_tanh:
loss = (1.0 - tf.image.ssim (y_true*mask, y_pred*mask, 1.0)) / 2.0
else:
loss = (1.0 - tf.image.ssim ( (y_true/2+0.5)*(mask/2+0.5), (y_pred/2+0.5)*(mask/2+0.5), 1.0)) / 2.0
if total_loss is None:
total_loss = loss
else:
total_loss += loss
return total_loss
return DSSIMMaskLoss
def MSEMaskLossClass(keras):
class MSEMaskLoss(object):
def __init__(self, mask_list, is_tanh=False):
self.mask_list = mask_list
self.is_tanh = is_tanh
def __call__(self,y_true, y_pred):
K = keras.backend
total_loss = None
for mask in self.mask_list:
if not self.is_tanh:
loss = K.mean(K.square(y_true*mask - y_pred*mask))
else:
loss = K.mean(K.square( (y_true/2+0.5)*(mask/2+0.5) - (y_pred/2+0.5)*(mask/2+0.5) ))
if total_loss is None:
total_loss = loss
else:
total_loss += loss
return total_loss
return MSEMaskLoss
def PixelShufflerClass(keras):
class PixelShuffler(keras.engine.topology.Layer):
def __init__(self, size=(2, 2), data_format=None, **kwargs):
super(PixelShuffler, self).__init__(**kwargs)
self.data_format = keras.utils.conv_utils.normalize_data_format(data_format)
self.size = keras.utils.conv_utils.normalize_tuple(size, 2, 'size')
def call(self, inputs):
input_shape = keras.backend.int_shape(inputs)
if len(input_shape) != 4:
raise ValueError('Inputs should have rank ' +
str(4) +
'; Received input shape:', str(input_shape))
if self.data_format == 'channels_first':
batch_size, c, h, w = input_shape
if batch_size is None:
batch_size = -1
rh, rw = self.size
oh, ow = h * rh, w * rw
oc = c // (rh * rw)
out = keras.backend.reshape(inputs, (batch_size, rh, rw, oc, h, w))
out = keras.backend.permute_dimensions(out, (0, 3, 4, 1, 5, 2))
out = keras.backend.reshape(out, (batch_size, oc, oh, ow))
return out
elif self.data_format == 'channels_last':
batch_size, h, w, c = input_shape
if batch_size is None:
batch_size = -1
rh, rw = self.size
oh, ow = h * rh, w * rw
oc = c // (rh * rw)
out = keras.backend.reshape(inputs, (batch_size, h, w, rh, rw, oc))
out = keras.backend.permute_dimensions(out, (0, 1, 3, 2, 4, 5))
out = keras.backend.reshape(out, (batch_size, oh, ow, oc))
return out
def compute_output_shape(self, input_shape):
if len(input_shape) != 4:
raise ValueError('Inputs should have rank ' +
str(4) +
'; Received input shape:', str(input_shape))
if self.data_format == 'channels_first':
height = input_shape[2] * self.size[0] if input_shape[2] is not None else None
width = input_shape[3] * self.size[1] if input_shape[3] is not None else None
channels = input_shape[1] // self.size[0] // self.size[1]
if channels * self.size[0] * self.size[1] != input_shape[1]:
raise ValueError('channels of input and size are incompatible')
return (input_shape[0],
channels,
height,
width)
elif self.data_format == 'channels_last':
height = input_shape[1] * self.size[0] if input_shape[1] is not None else None
width = input_shape[2] * self.size[1] if input_shape[2] is not None else None
channels = input_shape[3] // self.size[0] // self.size[1]
if channels * self.size[0] * self.size[1] != input_shape[3]:
raise ValueError('channels of input and size are incompatible')
return (input_shape[0],
height,
width,
channels)
def get_config(self):
config = {'size': self.size,
'data_format': self.data_format}
base_config = super(PixelShuffler, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
return PixelShuffler
def conv(keras, input_tensor, filters):
x = input_tensor
x = keras.layers.convolutional.Conv2D(filters, kernel_size=5, strides=2, padding='same')(x)
x = keras.layers.advanced_activations.LeakyReLU(0.1)(x)
return x
def upscale(keras, input_tensor, filters, k_size=3):
x = input_tensor
x = keras.layers.convolutional.Conv2D(filters * 4, kernel_size=k_size, padding='same')(x)
x = keras.layers.advanced_activations.LeakyReLU(0.1)(x)
x = PixelShufflerClass(keras)()(x)
return x
def upscale4(keras, input_tensor, filters):
x = input_tensor
x = keras.layers.convolutional.Conv2D(filters * 16, kernel_size=3, padding='same')(x)
x = keras.layers.advanced_activations.LeakyReLU(0.1)(x)
x = PixelShufflerClass(keras)(size=(4, 4))(x)
return x
def res(keras, input_tensor, filters):
x = input_tensor
x = keras.layers.convolutional.Conv2D(filters, kernel_size=3, kernel_initializer=keras.initializers.RandomNormal(0, 0.02), use_bias=False, padding="same")(x)
x = keras.layers.advanced_activations.LeakyReLU(alpha=0.2)(x)
x = keras.layers.convolutional.Conv2D(filters, kernel_size=3, kernel_initializer=keras.initializers.RandomNormal(0, 0.02), use_bias=False, padding="same")(x)
x = keras.layers.Add()([x, input_tensor])
x = keras.layers.advanced_activations.LeakyReLU(alpha=0.2)(x)
return x
def resize_like(tf, keras, ref_tensor, input_tensor):
def func(input_tensor, ref_tensor):
H, W = ref_tensor.get_shape()[1], ref_tensor.get_shape()[2]
return tf.image.resize_bilinear(input_tensor, [H.value, W.value])
return keras.layers.Lambda(func, arguments={'ref_tensor':ref_tensor})(input_tensor)
def total_variation_loss(keras, x):
K = keras.backend
assert K.ndim(x) == 4
B,H,W,C = K.int_shape(x)
a = K.square(x[:, :H - 1, :W - 1, :] - x[:, 1:, :W - 1, :])
b = K.square(x[:, :H - 1, :W - 1, :] - x[:, :H - 1, 1:, :])
return K.mean (a+b)