mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 12:36:42 -07:00
217 lines
10 KiB
Python
217 lines
10 KiB
Python
from models import ModelBase
|
|
from models import TrainingDataType
|
|
import numpy as np
|
|
import cv2
|
|
|
|
from nnlib import DSSIMMaskLossClass
|
|
from nnlib import conv
|
|
from nnlib import upscale
|
|
from facelib import FaceType
|
|
|
|
class Model(ModelBase):
|
|
|
|
encoderH5 = 'encoder.h5'
|
|
decoderMaskH5 = 'decoderMask.h5'
|
|
decoderCommonAH5 = 'decoderCommonA.h5'
|
|
decoderCommonBH5 = 'decoderCommonB.h5'
|
|
decoderRGBH5 = 'decoderRGB.h5'
|
|
decoderBWH5 = 'decoderBW.h5'
|
|
inter_BH5 = 'inter_B.h5'
|
|
inter_AH5 = 'inter_A.h5'
|
|
|
|
#override
|
|
def onInitialize(self, **in_options):
|
|
self.set_vram_batch_requirements( {5:4,6:8,7:12,8:16,9:20,10:24,11:24,12:32,13:48} )
|
|
|
|
ae_input_layer = self.keras.layers.Input(shape=(128, 128, 3))
|
|
mask_layer = self.keras.layers.Input(shape=(128, 128, 1)) #same as output
|
|
|
|
self.encoder = self.Encoder(ae_input_layer)
|
|
self.decoderMask = self.DecoderMask()
|
|
self.decoderCommonA = self.DecoderCommon()
|
|
self.decoderCommonB = self.DecoderCommon()
|
|
self.decoderRGB = self.DecoderRGB()
|
|
self.decoderBW = self.DecoderBW()
|
|
self.inter_A = self.Intermediate ()
|
|
self.inter_B = self.Intermediate ()
|
|
|
|
if not self.is_first_run():
|
|
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
|
self.decoderMask.load_weights (self.get_strpath_storage_for_file(self.decoderMaskH5))
|
|
self.decoderCommonA.load_weights (self.get_strpath_storage_for_file(self.decoderCommonAH5))
|
|
self.decoderCommonB.load_weights (self.get_strpath_storage_for_file(self.decoderCommonBH5))
|
|
self.decoderRGB.load_weights (self.get_strpath_storage_for_file(self.decoderRGBH5))
|
|
self.decoderBW.load_weights (self.get_strpath_storage_for_file(self.decoderBWH5))
|
|
self.inter_A.load_weights (self.get_strpath_storage_for_file(self.inter_AH5))
|
|
self.inter_B.load_weights (self.get_strpath_storage_for_file(self.inter_BH5))
|
|
|
|
code = self.encoder(ae_input_layer)
|
|
A = self.inter_A(code)
|
|
B = self.inter_B(code)
|
|
|
|
inter_A_A = self.keras.layers.Concatenate()([A, A])
|
|
inter_B_A = self.keras.layers.Concatenate()([B, A])
|
|
|
|
x1,m1 = self.decoderCommonA (inter_A_A)
|
|
x2,m2 = self.decoderCommonA (inter_A_A)
|
|
self.autoencoder_src = self.keras.models.Model([ae_input_layer,mask_layer],
|
|
[ self.decoderBW (self.keras.layers.Concatenate()([x1,x2]) ),
|
|
self.decoderMask(self.keras.layers.Concatenate()([m1,m2]) )
|
|
])
|
|
|
|
x1,m1 = self.decoderCommonA (inter_A_A)
|
|
x2,m2 = self.decoderCommonB (inter_A_A)
|
|
self.autoencoder_src_RGB = self.keras.models.Model([ae_input_layer,mask_layer],
|
|
[ self.decoderRGB (self.keras.layers.Concatenate()([x1,x2]) ),
|
|
self.decoderMask (self.keras.layers.Concatenate()([m1,m2]) )
|
|
])
|
|
|
|
x1,m1 = self.decoderCommonA (inter_B_A)
|
|
x2,m2 = self.decoderCommonB (inter_B_A)
|
|
self.autoencoder_dst = self.keras.models.Model([ae_input_layer,mask_layer],
|
|
[ self.decoderRGB (self.keras.layers.Concatenate()([x1,x2]) ),
|
|
self.decoderMask (self.keras.layers.Concatenate()([m1,m2]) )
|
|
])
|
|
|
|
if self.is_training_mode:
|
|
self.autoencoder_src, self.autoencoder_dst = self.to_multi_gpu_model_if_possible ( [self.autoencoder_src, self.autoencoder_dst] )
|
|
|
|
optimizer = self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
|
|
dssimloss = DSSIMMaskLossClass(self.tf)([mask_layer])
|
|
self.autoencoder_src.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
|
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
|
|
|
if self.is_training_mode:
|
|
from models import TrainingDataGenerator
|
|
f = TrainingDataGenerator.SampleTypeFlags
|
|
self.set_training_data_generators ([
|
|
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_GGG, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_G , 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_GGG, 128] ], random_flip=True ),
|
|
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128]], random_flip=True )
|
|
])
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
|
|
[self.decoderMask, self.get_strpath_storage_for_file(self.decoderMaskH5)],
|
|
[self.decoderCommonA, self.get_strpath_storage_for_file(self.decoderCommonAH5)],
|
|
[self.decoderCommonB, self.get_strpath_storage_for_file(self.decoderCommonBH5)],
|
|
[self.decoderRGB, self.get_strpath_storage_for_file(self.decoderRGBH5)],
|
|
[self.decoderBW, self.get_strpath_storage_for_file(self.decoderBWH5)],
|
|
[self.inter_A, self.get_strpath_storage_for_file(self.inter_AH5)],
|
|
[self.inter_B, self.get_strpath_storage_for_file(self.inter_BH5)]] )
|
|
|
|
|
|
#override
|
|
def onTrainOneEpoch(self, sample):
|
|
warped_src, target_src, target_src_mask, target_src_GGG = sample[0]
|
|
warped_dst, target_dst, target_dst_mask = sample[1]
|
|
|
|
loss_src = self.autoencoder_src.train_on_batch( [ warped_src, target_src_mask], [ target_src, target_src_mask] )
|
|
loss_dst = self.autoencoder_dst.train_on_batch( [ warped_dst, target_dst_mask], [ target_dst, target_dst_mask] )
|
|
|
|
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][3][0:4] #first 4 samples
|
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
|
test_B = sample[1][1][0:4]
|
|
test_B_m = sample[1][2][0:4]
|
|
|
|
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
|
|
AB, mAB = self.autoencoder_src_RGB.predict([test_B, test_B_m])
|
|
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
|
|
|
|
mAA = np.repeat ( mAA, (3,), -1)
|
|
mAB = np.repeat ( mAB, (3,), -1)
|
|
mBB = np.repeat ( mBB, (3,), -1)
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
st.append ( np.concatenate ( (
|
|
np.repeat (np.expand_dims (test_A[i,:,:,0],-1), (3,), -1) ,
|
|
np.repeat (AA[i], (3,), -1),
|
|
#mAA[i],
|
|
test_B[i,:,:,0:3],
|
|
BB[i],
|
|
#mBB[i],
|
|
AB[i],
|
|
#mAB[i]
|
|
), axis=1) )
|
|
|
|
return [ ('MIAEF128', np.concatenate ( st, axis=0 ) ) ]
|
|
|
|
def predictor_func (self, face):
|
|
face_128_bgr = face[...,0:3]
|
|
face_128_mask = np.expand_dims(face[...,-1],-1)
|
|
|
|
x, mx = self.autoencoder_src_RGB.predict ( [ np.expand_dims(face_128_bgr,0), np.expand_dims(face_128_mask,0) ] )
|
|
x, mx = x[0], mx[0]
|
|
|
|
return np.concatenate ( (x,mx), -1 )
|
|
|
|
#override
|
|
def get_converter(self, **in_options):
|
|
from models import ConverterMasked
|
|
|
|
if 'masked_hist_match' not in in_options.keys() or in_options['masked_hist_match'] is None:
|
|
in_options['masked_hist_match'] = False
|
|
|
|
if 'erode_mask_modifier' not in in_options.keys():
|
|
in_options['erode_mask_modifier'] = 0
|
|
in_options['erode_mask_modifier'] += 30
|
|
|
|
if 'blur_mask_modifier' not in in_options.keys():
|
|
in_options['blur_mask_modifier'] = 0
|
|
|
|
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.FULL, clip_border_mask_per=0.046875, **in_options)
|
|
|
|
|
|
def Encoder(self, input_layer,):
|
|
x = input_layer
|
|
x = conv(self.keras, x, 128)
|
|
x = conv(self.keras, x, 256)
|
|
x = conv(self.keras, x, 512)
|
|
x = conv(self.keras, x, 1024)
|
|
x = self.keras.layers.Flatten()(x)
|
|
return self.keras.models.Model(input_layer, x)
|
|
|
|
def Intermediate(self):
|
|
input_layer = self.keras.layers.Input(shape=(None, 8 * 8 * 1024))
|
|
x = input_layer
|
|
x = self.keras.layers.Dense(256)(x)
|
|
x = self.keras.layers.Dense(8 * 8 * 512)(x)
|
|
x = self.keras.layers.Reshape((8, 8, 512))(x)
|
|
x = upscale(self.keras, x, 512)
|
|
return self.keras.models.Model(input_layer, x)
|
|
|
|
def DecoderCommon(self):
|
|
input_ = self.keras.layers.Input(shape=(16, 16, 1024))
|
|
x = input_
|
|
x = upscale(self.keras, x, 512)
|
|
x = upscale(self.keras, x, 256)
|
|
x = upscale(self.keras, x, 128)
|
|
|
|
y = input_
|
|
y = upscale(self.keras, y, 256)
|
|
y = upscale(self.keras, y, 128)
|
|
y = upscale(self.keras, y, 64)
|
|
|
|
return self.keras.models.Model(input_, [x,y])
|
|
|
|
def DecoderRGB(self):
|
|
input_ = self.keras.layers.Input(shape=(128, 128, 256))
|
|
x = input_
|
|
x = self.keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return self.keras.models.Model(input_, [x])
|
|
|
|
def DecoderBW(self):
|
|
input_ = self.keras.layers.Input(shape=(128, 128, 256))
|
|
x = input_
|
|
x = self.keras.layers.convolutional.Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return self.keras.models.Model(input_, [x])
|
|
|
|
def DecoderMask(self):
|
|
input_ = self.keras.layers.Input(shape=(128, 128, 128))
|
|
y = input_
|
|
y = self.keras.layers.convolutional.Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
|
|
return self.keras.models.Model(input_, [y])
|