mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 12:36:42 -07:00
223 lines
No EOL
11 KiB
Python
223 lines
No EOL
11 KiB
Python
from models import ModelBase
|
|
from models import TrainingDataType
|
|
import numpy as np
|
|
import cv2
|
|
from nnlib import tf_dssim
|
|
from nnlib import conv
|
|
from nnlib import upscale
|
|
|
|
class Model(ModelBase):
|
|
|
|
encoder64H5 = 'encoder64.h5'
|
|
decoder64_srcH5 = 'decoder64_src.h5'
|
|
decoder64_dstH5 = 'decoder64_dst.h5'
|
|
encoder128H5 = 'encoder128.h5'
|
|
decoder128_srcH5 = 'decoder128_src.h5'
|
|
|
|
#override
|
|
def onInitialize(self, **in_options):
|
|
tf = self.tf
|
|
keras = self.keras
|
|
K = keras.backend
|
|
|
|
self.set_vram_batch_requirements( {4:8,5:16,6:20,7:24,8:32,9:48} )
|
|
|
|
self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder128, self.decoder128_src = self.BuildAE()
|
|
img_shape64 = (64,64,1)
|
|
img_shape128 = (256,256,3)
|
|
|
|
if not self.is_first_run():
|
|
self.encoder64.load_weights (self.get_strpath_storage_for_file(self.encoder64H5))
|
|
self.decoder64_src.load_weights (self.get_strpath_storage_for_file(self.decoder64_srcH5))
|
|
self.decoder64_dst.load_weights (self.get_strpath_storage_for_file(self.decoder64_dstH5))
|
|
self.encoder128.load_weights (self.get_strpath_storage_for_file(self.encoder128H5))
|
|
self.decoder128_src.load_weights (self.get_strpath_storage_for_file(self.decoder128_srcH5))
|
|
|
|
if self.is_training_mode:
|
|
self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder128, self.decoder128_src = self.to_multi_gpu_model_if_possible ( [self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder128, self.decoder128_src] )
|
|
|
|
input_src_64 = keras.layers.Input(img_shape64)
|
|
input_src_target64 = keras.layers.Input(img_shape64)
|
|
input_src_target128 = keras.layers.Input(img_shape128)
|
|
input_dst_64 = keras.layers.Input(img_shape64)
|
|
input_dst_target64 = keras.layers.Input(img_shape64)
|
|
|
|
src_code64 = self.encoder64(input_src_64)
|
|
dst_code64 = self.encoder64(input_dst_64)
|
|
|
|
rec_src64 = self.decoder64_src(src_code64)
|
|
rec_dst64 = self.decoder64_dst(dst_code64)
|
|
|
|
src64_loss = tf_dssim(tf, input_src_target64, rec_src64)
|
|
dst64_loss = tf_dssim(tf, input_dst_target64, rec_dst64)
|
|
total64_loss = src64_loss + dst64_loss
|
|
|
|
self.ed64_train = K.function ([input_src_64, input_src_target64, input_dst_64, input_dst_target64],[K.mean(total64_loss)],
|
|
self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(total64_loss, self.encoder64.trainable_weights + self.decoder64_src.trainable_weights + self.decoder64_dst.trainable_weights)
|
|
)
|
|
|
|
src_code128 = self.encoder128(input_src_64)
|
|
rec_src128 = self.decoder128_src(src_code128)
|
|
src128_loss = tf_dssim(tf, input_src_target128, rec_src128)
|
|
|
|
self.ed128_train = K.function ([input_src_64, input_src_target128],[K.mean(src128_loss)],
|
|
self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src128_loss, self.encoder128.trainable_weights + self.decoder128_src.trainable_weights)
|
|
)
|
|
|
|
src_code128 = self.encoder128(rec_src64)
|
|
rec_src128 = self.decoder128_src(src_code128)
|
|
|
|
self.src128_view = K.function ([input_src_64], [rec_src128])
|
|
|
|
if self.is_training_mode:
|
|
from models import TrainingDataGenerator
|
|
f = TrainingDataGenerator.SampleTypeFlags
|
|
self.set_training_data_generators ([
|
|
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
|
[f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_G, 64],
|
|
[f.TRANSFORMED | f.HALF_FACE | f.MODE_G, 64],
|
|
[f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 256],
|
|
[f.SOURCE | f.HALF_FACE | f.MODE_G, 64],
|
|
[f.SOURCE | f.HALF_FACE | f.MODE_GGG, 256] ] ),
|
|
|
|
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
|
[f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_G, 64],
|
|
[f.TRANSFORMED | f.HALF_FACE | f.MODE_G, 64],
|
|
[f.SOURCE | f.HALF_FACE | f.MODE_G, 64],
|
|
[f.SOURCE | f.HALF_FACE | f.MODE_GGG, 256] ] )
|
|
])
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( [[self.encoder64, self.get_strpath_storage_for_file(self.encoder64H5)],
|
|
[self.decoder64_src, self.get_strpath_storage_for_file(self.decoder64_srcH5)],
|
|
[self.decoder64_dst, self.get_strpath_storage_for_file(self.decoder64_dstH5)],
|
|
[self.encoder128, self.get_strpath_storage_for_file(self.encoder128H5)],
|
|
[self.decoder128_src, self.get_strpath_storage_for_file(self.decoder128_srcH5)],
|
|
] )
|
|
|
|
#override
|
|
def onTrainOneEpoch(self, sample):
|
|
warped_src64, target_src64, target_src128, target_src_source64_G, target_src_source128_GGG = sample[0]
|
|
warped_dst64, target_dst64, target_dst_source64_G, target_dst_source128_GGG = sample[1]
|
|
|
|
loss64, = self.ed64_train ([warped_src64, target_src64, warped_dst64, target_dst64])
|
|
loss256, = self.ed128_train ([warped_src64, target_src128])
|
|
|
|
return ( ('loss64', loss64), ('loss256', loss256) )
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
n_samples = 4
|
|
test_B = sample[1][2][0:n_samples]
|
|
test_B128 = sample[1][3][0:n_samples]
|
|
|
|
BB, = self.src128_view ([test_B])
|
|
|
|
st = []
|
|
for i in range(n_samples // 2):
|
|
st.append ( np.concatenate ( (
|
|
test_B128[i*2+0], BB[i*2+0], test_B128[i*2+1], BB[i*2+1],
|
|
), axis=1) )
|
|
return [ ('AVATAR', np.concatenate ( st, axis=0 ) ) ]
|
|
|
|
def predictor_func (self, img):
|
|
x, = self.src128_view ([ np.expand_dims(img, 0) ])[0]
|
|
return x
|
|
|
|
#override
|
|
def get_converter(self, **in_options):
|
|
return ConverterAvatar(self.predictor_func, predictor_input_size=64, output_size=256, **in_options)
|
|
|
|
def BuildAE(self):
|
|
keras, K = self.keras, self.keras.backend
|
|
|
|
def Encoder(_input):
|
|
x = keras.layers.convolutional.Conv2D(90, kernel_size=5, strides=1, padding='same')(_input)
|
|
x = keras.layers.convolutional.Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
|
|
x = keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
|
|
|
|
x = keras.layers.convolutional.Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
|
|
x = keras.layers.convolutional.Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
|
|
x = keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
|
|
|
|
x = keras.layers.convolutional.Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
|
|
x = keras.layers.convolutional.Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
|
|
x = keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
|
|
|
|
x = keras.layers.Dense (1024)(x)
|
|
x = keras.layers.advanced_activations.LeakyReLU(0.1)(x)
|
|
x = keras.layers.Dropout(0.5)(x)
|
|
|
|
x = keras.layers.Dense (1024)(x)
|
|
x = keras.layers.advanced_activations.LeakyReLU(0.1)(x)
|
|
x = keras.layers.Dropout(0.5)(x)
|
|
x = keras.layers.Flatten()(x)
|
|
x = keras.layers.Dense (64)(x)
|
|
return keras.models.Model (_input, x)
|
|
|
|
encoder128 = Encoder( keras.layers.Input ( (64, 64, 1) ) )
|
|
encoder64 = Encoder( keras.layers.Input ( (64, 64, 1) ) )
|
|
|
|
def decoder128_3(encoder):
|
|
decoder_input = keras.layers.Input ( K.int_shape(encoder.outputs[0])[1:] )
|
|
x = decoder_input
|
|
x = self.keras.layers.Dense(16 * 16 * 720)(x)
|
|
x = keras.layers.Reshape ( (16, 16, 720) )(x)
|
|
x = upscale(keras, x, 720)
|
|
x = upscale(keras, x, 360)
|
|
x = upscale(keras, x, 180)
|
|
x = upscale(keras, x, 90)
|
|
x = keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return keras.models.Model(decoder_input, x)
|
|
|
|
def decoder64_1(encoder):
|
|
decoder_input = keras.layers.Input ( K.int_shape(encoder.outputs[0])[1:] )
|
|
x = decoder_input
|
|
x = self.keras.layers.Dense(8 * 8 * 720)(x)
|
|
x = keras.layers.Reshape ( (8,8,720) )(x)
|
|
x = upscale(keras, x, 360)
|
|
x = upscale(keras, x, 180)
|
|
x = upscale(keras, x, 90)
|
|
x = keras.layers.convolutional.Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return keras.models.Model(decoder_input, x)
|
|
|
|
return encoder64, decoder64_1(encoder64), decoder64_1(encoder64), encoder128, decoder128_3(encoder128)
|
|
|
|
from models import ConverterBase
|
|
from facelib import FaceType
|
|
from facelib import LandmarksProcessor
|
|
class ConverterAvatar(ConverterBase):
|
|
|
|
#override
|
|
def __init__(self, predictor,
|
|
predictor_input_size=0,
|
|
output_size=0,
|
|
**in_options):
|
|
|
|
super().__init__(predictor)
|
|
|
|
self.predictor_input_size = predictor_input_size
|
|
self.output_size = output_size
|
|
|
|
#override
|
|
def get_mode(self):
|
|
return ConverterBase.MODE_IMAGE
|
|
|
|
#override
|
|
def dummy_predict(self):
|
|
self.predictor ( np.zeros ( (self.predictor_input_size, self.predictor_input_size,1), dtype=np.float32) )
|
|
|
|
#override
|
|
def convert_image (self, img_bgr, img_face_landmarks, debug):
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.predictor_input_size, face_type=FaceType.HALF )
|
|
predictor_input_bgr = cv2.warpAffine( img_bgr, face_mat, (self.predictor_input_size, self.predictor_input_size), flags=cv2.INTER_LANCZOS4 )
|
|
predictor_input_g = np.expand_dims(cv2.cvtColor(predictor_input_bgr, cv2.COLOR_BGR2GRAY),-1)
|
|
|
|
predicted_bgr = self.predictor ( predictor_input_g )
|
|
|
|
output = cv2.resize ( predicted_bgr, (self.output_size, self.output_size), cv2.INTER_LANCZOS4 )
|
|
if debug:
|
|
return (img_bgr,output,)
|
|
return output |