mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 12:36:42 -07:00
194 lines
No EOL
9.3 KiB
Python
194 lines
No EOL
9.3 KiB
Python
from models import ConverterBase
|
|
from facelib import LandmarksProcessor
|
|
from facelib import FaceType
|
|
import cv2
|
|
import numpy as np
|
|
from utils import image_utils
|
|
|
|
'''
|
|
predictor:
|
|
input: [predictor_input_size, predictor_input_size, BGRA]
|
|
output: [predictor_input_size, predictor_input_size, BGRA]
|
|
'''
|
|
|
|
class ConverterMasked(ConverterBase):
|
|
|
|
#override
|
|
def __init__(self, predictor,
|
|
predictor_input_size=0,
|
|
output_size=0,
|
|
face_type=FaceType.FULL,
|
|
erode_mask = True,
|
|
blur_mask = True,
|
|
clip_border_mask_per = 0,
|
|
masked_hist_match = False,
|
|
mode='seamless',
|
|
erode_mask_modifier=0,
|
|
blur_mask_modifier=0,
|
|
**in_options):
|
|
|
|
super().__init__(predictor)
|
|
|
|
self.predictor_input_size = predictor_input_size
|
|
self.output_size = output_size
|
|
self.face_type = face_type
|
|
self.erode_mask = erode_mask
|
|
self.blur_mask = blur_mask
|
|
self.clip_border_mask_per = clip_border_mask_per
|
|
self.masked_hist_match = masked_hist_match
|
|
self.mode = mode
|
|
self.erode_mask_modifier = erode_mask_modifier
|
|
self.blur_mask_modifier = blur_mask_modifier
|
|
|
|
if self.erode_mask_modifier != 0 and not self.erode_mask:
|
|
print ("Erode mask modifier not used in this model.")
|
|
|
|
if self.blur_mask_modifier != 0 and not self.blur_mask:
|
|
print ("Blur modifier not used in this model.")
|
|
|
|
#override
|
|
def get_mode(self):
|
|
return ConverterBase.MODE_FACE
|
|
|
|
#override
|
|
def dummy_predict(self):
|
|
self.predictor ( np.zeros ( (self.predictor_input_size,self.predictor_input_size,4), dtype=np.float32 ) )
|
|
|
|
#override
|
|
def convert_face (self, img_bgr, img_face_landmarks, debug):
|
|
if debug:
|
|
debugs = [img_bgr.copy()]
|
|
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
|
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
|
|
|
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
|
|
predictor_input_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
|
|
predictor_input_mask_a = np.expand_dims (predictor_input_mask_a_0, -1)
|
|
|
|
predicted_bgra = self.predictor ( np.concatenate( (predictor_input_bgr, predictor_input_mask_a), -1) )
|
|
|
|
prd_face_bgr = np.clip (predicted_bgra[:,:,0:3], 0, 1.0 )
|
|
prd_face_mask_a_0 = np.clip (predicted_bgra[:,:,3], 0.0, 1.0)
|
|
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
|
|
|
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
|
|
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
|
|
|
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
|
img_prd_face_mask_aaa = np.clip (img_prd_face_mask_aaa, 0.0, 1.0)
|
|
|
|
img_face_mask_aaa = img_prd_face_mask_aaa
|
|
|
|
if debug:
|
|
debugs += [img_face_mask_aaa.copy()]
|
|
|
|
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0
|
|
|
|
img_face_mask_flatten_aaa = img_face_mask_aaa.copy()
|
|
img_face_mask_flatten_aaa[img_face_mask_flatten_aaa > 0.9] = 1.0
|
|
|
|
maxregion = np.argwhere(img_face_mask_flatten_aaa==1.0)
|
|
|
|
out_img = img_bgr.copy()
|
|
if maxregion.size != 0:
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
lenx = maxx - minx
|
|
leny = maxy - miny
|
|
masky = int(minx+(lenx//2))
|
|
maskx = int(miny+(leny//2))
|
|
lowest_len = min (lenx, leny)
|
|
|
|
if debug:
|
|
print ("lowest_len = %f" % (lowest_len) )
|
|
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
|
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
|
|
|
if debug:
|
|
print ("ero = %d, blur = %d" % (ero, blur) )
|
|
|
|
img_mask_blurry_aaa = img_face_mask_aaa
|
|
if self.erode_mask:
|
|
if ero > 0:
|
|
img_mask_blurry_aaa = cv2.erode(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_mask_blurry_aaa = cv2.dilate(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
if self.blur_mask and blur > 0:
|
|
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
|
|
|
|
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
|
|
|
if self.clip_border_mask_per > 0:
|
|
prd_border_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
|
|
prd_border_size = int ( prd_border_rect_mask_a.shape[1] * self.clip_border_mask_per )
|
|
|
|
prd_border_rect_mask_a[0:prd_border_size,:,:] = 0
|
|
prd_border_rect_mask_a[-prd_border_size:,:,:] = 0
|
|
prd_border_rect_mask_a[:,0:prd_border_size,:] = 0
|
|
prd_border_rect_mask_a[:,-prd_border_size:,:] = 0
|
|
prd_border_rect_mask_a = np.expand_dims(cv2.blur(prd_border_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
|
|
|
if self.mode == 'hist-match-bw':
|
|
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
|
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
if debug:
|
|
debugs += [ cv2.warpAffine( prd_face_bgr, face_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
|
|
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
|
|
|
if self.masked_hist_match:
|
|
hist_mask_a *= prd_face_mask_a
|
|
|
|
new_prd_face_bgr = image_utils.color_hist_match(prd_face_bgr*hist_mask_a, dst_face_bgr*hist_mask_a )
|
|
|
|
prd_face_bgr = new_prd_face_bgr
|
|
|
|
if self.mode == 'hist-match-bw':
|
|
prd_face_bgr = prd_face_bgr.astype(np.float32)
|
|
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
debugs += [img_mask_blurry_aaa.copy()]
|
|
|
|
if self.mode == 'seamless' or self.mode == 'seamless-hist-match':
|
|
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 )
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_mask_flatten_aaa*255).astype(np.uint8), (masky,maskx) , cv2.NORMAL_CLONE )
|
|
out_img = out_img.astype(np.float32) / 255.0
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
if self.clip_border_mask_per > 0:
|
|
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
|
|
|
out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
|
|
img_mask_blurry_aaa *= img_prd_border_rect_mask_a
|
|
|
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
|
|
|
if self.mode == 'seamless-hist-match':
|
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
|
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr )
|
|
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
return debugs if debug else out_img
|
|
|