DeepFaceLab/models/ConverterMasked.py

255 lines
No EOL
14 KiB
Python

from models import ConverterBase
from facelib import LandmarksProcessor
from facelib import FaceType
import cv2
import numpy as np
from utils import image_utils
class ConverterMasked(ConverterBase):
#override
def __init__(self, predictor,
predictor_input_size=0,
output_size=0,
face_type=FaceType.FULL,
clip_border_mask_per = 0,
masked_hist_match = True,
hist_match_threshold = 255,
mode='seamless',
use_predicted_mask = True,
erode_mask_modifier=0,
blur_mask_modifier=0,
seamless_erode_mask_modifier=0,
output_face_scale_modifier=0.0,
transfercolor=False,
final_image_color_degrade_power=0,
alpha=False,
**in_options):
super().__init__(predictor)
self.predictor_input_size = predictor_input_size
self.output_size = output_size
self.face_type = face_type
self.use_predicted_mask = use_predicted_mask
self.clip_border_mask_per = clip_border_mask_per
self.masked_hist_match = masked_hist_match
self.hist_match_threshold = hist_match_threshold
self.mode = mode
self.erode_mask_modifier = erode_mask_modifier
self.blur_mask_modifier = blur_mask_modifier
self.seamless_erode_mask_modifier = seamless_erode_mask_modifier
self.output_face_scale = np.clip(1.0 + output_face_scale_modifier*0.01, 0.5, 1.5)
self.transfercolor = transfercolor
self.TFLabConverter = None
self.final_image_color_degrade_power = np.clip (final_image_color_degrade_power, 0, 100)
self.alpha = alpha
#override
def get_mode(self):
return ConverterBase.MODE_FACE
#override
def dummy_predict(self):
self.predictor ( np.zeros ( (self.predictor_input_size,self.predictor_input_size,4), dtype=np.float32 ) )
#override
def convert_face (self, img_bgr, img_face_landmarks, debug):
if debug:
debugs = [img_bgr.copy()]
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
predictor_input_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
predictor_input_mask_a = np.expand_dims (predictor_input_mask_a_0, -1)
predicted_bgra = self.predictor ( np.concatenate( (predictor_input_bgr, predictor_input_mask_a), -1) )
prd_face_bgr = np.clip (predicted_bgra[:,:,0:3], 0, 1.0 )
prd_face_mask_a_0 = np.clip (predicted_bgra[:,:,3], 0.0, 1.0)
if not self.use_predicted_mask:
prd_face_mask_a_0 = predictor_input_mask_a_0
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
img_prd_face_mask_aaa = np.clip (img_prd_face_mask_aaa, 0.0, 1.0)
img_face_mask_aaa = img_prd_face_mask_aaa
if debug:
debugs += [img_face_mask_aaa.copy()]
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0
img_face_mask_flatten_aaa = img_face_mask_aaa.copy()
img_face_mask_flatten_aaa[img_face_mask_flatten_aaa > 0.9] = 1.0
maxregion = np.argwhere(img_face_mask_flatten_aaa==1.0)
out_img = img_bgr.copy()
if maxregion.size != 0:
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
if debug:
print ("maxregion.size: %d, minx:%d, maxx:%d miny:%d, maxy:%d" % (maxregion.size, minx, maxx, miny, maxy ) )
lenx = maxx - minx
leny = maxy - miny
if lenx >= 4 and leny >= 4:
masky = int(minx+(lenx//2))
maskx = int(miny+(leny//2))
lowest_len = min (lenx, leny)
if debug:
print ("lowest_len = %f" % (lowest_len) )
img_mask_blurry_aaa = img_face_mask_aaa
if self.erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
if debug:
print ("erode_size = %d" % (ero) )
if ero > 0:
img_mask_blurry_aaa = cv2.erode(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_mask_blurry_aaa = cv2.dilate(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
if self.seamless_erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.seamless_erode_mask_modifier )
if ero > 0:
img_face_mask_flatten_aaa = cv2.erode(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_face_mask_flatten_aaa = cv2.dilate(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
if debug:
print ("seamless_erode_size = %d" % (ero) )
if self.blur_mask_modifier > 0:
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
if debug:
print ("blur_size = %d" % (blur) )
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
#if self.clip_border_mask_per > 0:
# prd_border_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
# prd_border_size = int ( prd_border_rect_mask_a.shape[1] * self.clip_border_mask_per )
#
# prd_border_rect_mask_a[0:prd_border_size,:,:] = 0
# prd_border_rect_mask_a[-prd_border_size:,:,:] = 0
# prd_border_rect_mask_a[:,0:prd_border_size,:] = 0
# prd_border_rect_mask_a[:,-prd_border_size:,:] = 0
# prd_border_rect_mask_a = np.expand_dims(cv2.blur(prd_border_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
if self.mode == 'hist-match-bw':
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
if debug:
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
if self.masked_hist_match:
hist_mask_a *= prd_face_mask_a
hist_match_1 = prd_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
hist_match_2 = dst_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
new_prd_face_bgr = image_utils.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
prd_face_bgr = new_prd_face_bgr
if self.mode == 'hist-match-bw':
prd_face_bgr = prd_face_bgr.astype(np.float32)
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
if debug:
debugs += [out_img.copy()]
debugs += [img_mask_blurry_aaa.copy()]
if self.mode == 'seamless' or self.mode == 'seamless-hist-match':
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 )
if debug:
debugs += [out_img.copy()]
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_mask_flatten_aaa*255).astype(np.uint8), (masky,maskx) , cv2.NORMAL_CLONE )
out_img = out_img.astype(np.float32) / 255.0
if debug:
debugs += [out_img.copy()]
#if self.clip_border_mask_per > 0:
# img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
# img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
#
# out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
# img_mask_blurry_aaa *= img_prd_border_rect_mask_a
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
if self.mode == 'seamless-hist-match':
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
if self.transfercolor:
if self.TFLabConverter is None:
self.TFLabConverter = image_utils.TFLabConverter()
img_lab_l, img_lab_a, img_lab_b = np.split ( self.TFLabConverter.bgr2lab (img_bgr), 3, axis=-1 )
out_img_lab_l, out_img_lab_a, out_img_lab_b = np.split ( self.TFLabConverter.bgr2lab (out_img), 3, axis=-1 )
out_img = self.TFLabConverter.lab2bgr ( np.concatenate([out_img_lab_l, img_lab_a, img_lab_b], axis=-1) )
if self.final_image_color_degrade_power != 0:
if debug:
debugs += [out_img.copy()]
out_img_reduced = image_utils.reduce_colors(out_img, 256)
if self.final_image_color_degrade_power == 100:
out_img = out_img_reduced
else:
alpha = self.final_image_color_degrade_power / 100.0
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
if self.alpha:
new_image = out_img.copy()
new_image = (new_image*255).astype(np.uint8) #convert image to int
b_channel, g_channel, r_channel = cv2.split(new_image) #splitting RGB
alpha_channel = img_mask_blurry_aaa.copy() #making copy of alpha channel
alpha_channel = (alpha_channel*255).astype(np.uint8)
alpha_channel, tmp2, tmp3 = cv2.split(alpha_channel) #splitting alpha to three channels, they all same in original alpha channel, we need just one
out_img = cv2.merge((b_channel,g_channel, r_channel, alpha_channel)) #mergin RGB with alpha
out_img = out_img.astype(np.float32) / 255.0
if debug:
debugs += [out_img.copy()]
return debugs if debug else out_img