mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 20:42:11 -07:00
removed support of extracted(aligned) PNG faces. Use old builds to convert from PNG to JPG. fanseg model file in facelib/ is renamed
95 lines
No EOL
3.3 KiB
Python
95 lines
No EOL
3.3 KiB
Python
import os
|
|
import pickle
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core.interact import interact as io
|
|
from core.leras import nn
|
|
|
|
|
|
class DFLSegNet(object):
|
|
VERSION = 1
|
|
|
|
def __init__ (self, name,
|
|
resolution,
|
|
load_weights=True,
|
|
weights_file_root=None,
|
|
training=False,
|
|
place_model_on_cpu=False,
|
|
run_on_cpu=False,
|
|
optimizer=None,
|
|
data_format="NHWC"):
|
|
|
|
nn.initialize(data_format=data_format)
|
|
tf = nn.tf
|
|
|
|
self.weights_file_root = Path(weights_file_root) if weights_file_root is not None else Path(__file__).parent
|
|
|
|
with tf.device ('/CPU:0'):
|
|
#Place holders on CPU
|
|
self.input_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,3) )
|
|
self.target_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,1) )
|
|
|
|
# Initializing model classes
|
|
archi = nn.DFLSegnetArchi()
|
|
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'):
|
|
self.enc = archi.Encoder(3, 64, name='Encoder')
|
|
self.dec = archi.Decoder(64, 1, name='Decoder')
|
|
self.enc_dec_weights = self.enc.get_weights()+self.dec.get_weights()
|
|
|
|
model_name = f'{name}_{resolution}'
|
|
|
|
self.model_filename_list = [ [self.enc, f'{model_name}_enc.npy'],
|
|
[self.dec, f'{model_name}_dec.npy'],
|
|
]
|
|
|
|
if training:
|
|
if optimizer is None:
|
|
raise ValueError("Optimizer should be provided for training mode.")
|
|
|
|
self.opt = optimizer
|
|
self.opt.initialize_variables (self.enc_dec_weights, vars_on_cpu=place_model_on_cpu)
|
|
self.model_filename_list += [ [self.opt, f'{model_name}_opt.npy' ] ]
|
|
else:
|
|
with tf.device ('/CPU:0' if run_on_cpu else '/GPU:0'):
|
|
_, pred = self.dec(self.enc(self.input_t))
|
|
|
|
def net_run(input_np):
|
|
return nn.tf_sess.run ( [pred], feed_dict={self.input_t :input_np})[0]
|
|
self.net_run = net_run
|
|
|
|
# Loading/initializing all models/optimizers weights
|
|
for model, filename in self.model_filename_list:
|
|
do_init = not load_weights
|
|
|
|
if not do_init:
|
|
do_init = not model.load_weights( self.weights_file_root / filename )
|
|
|
|
if do_init:
|
|
model.init_weights()
|
|
|
|
def flow(self, x):
|
|
return self.dec(self.enc(x))
|
|
|
|
def get_weights(self):
|
|
return self.enc_dec_weights
|
|
|
|
def save_weights(self):
|
|
for model, filename in io.progress_bar_generator(self.model_filename_list, "Saving", leave=False):
|
|
model.save_weights( self.weights_file_root / filename )
|
|
|
|
def extract (self, input_image):
|
|
input_shape_len = len(input_image.shape)
|
|
if input_shape_len == 3:
|
|
input_image = input_image[None,...]
|
|
|
|
result = np.clip ( self.net_run(input_image), 0, 1.0 )
|
|
result[result < 0.1] = 0 #get rid of noise
|
|
|
|
if input_shape_len == 3:
|
|
result = result[0]
|
|
|
|
return result |