DeepFaceLab/core/leras/archis/DeepFakeArchi.py
Colombo 61472cdaf7 global refactoring and fixes,
removed support of extracted(aligned) PNG faces. Use old builds to convert from PNG to JPG.

fanseg model file in facelib/ is renamed
2020-03-13 08:09:00 +04:00

490 lines
No EOL
22 KiB
Python

from core.leras import nn
tf = nn.tf
class DeepFakeArchi(nn.ArchiBase):
"""
resolution
mod None - default
'chervonij'
'quick'
"""
def __init__(self, resolution, mod=None):
super().__init__()
if mod is None:
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.dilations = dilations
self.subpixel = subpixel
self.use_activator = use_activator
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch,
self.out_ch // (4 if self.subpixel else 1),
kernel_size=self.kernel_size,
strides=1 if self.subpixel else 2,
padding='SAME', dilations=self.dilations)
def forward(self, x):
x = self.conv1(x)
if self.subpixel:
x = nn.space_to_depth(x, 2)
if self.use_activator:
x = tf.nn.leaky_relu(x, 0.1)
return x
def get_out_ch(self):
return (self.out_ch // 4) * 4
class DownscaleBlock(nn.ModelBase):
def on_build(self, in_ch, ch, n_downscales, kernel_size, dilations=1, subpixel=True):
self.downs = []
last_ch = in_ch
for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size, dilations=dilations, subpixel=subpixel) )
last_ch = self.downs[-1].get_out_ch()
def forward(self, inp):
x = inp
for down in self.downs:
x = down(x)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = tf.nn.leaky_relu(inp + x, 0.2)
return x
class UpdownResidualBlock(nn.ModelBase):
def on_build(self, ch, inner_ch, kernel_size=3 ):
self.up = Upscale (ch, inner_ch, kernel_size=kernel_size)
self.res = ResidualBlock (inner_ch, kernel_size=kernel_size)
self.down = Downscale (inner_ch, ch, kernel_size=kernel_size, use_activator=False)
def forward(self, inp):
x = self.up(inp)
x = upx = self.res(x)
x = self.down(x)
x = x + inp
x = tf.nn.leaky_relu(x, 0.2)
return x, upx
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, is_hd):
self.is_hd=is_hd
if self.is_hd:
self.down1 = DownscaleBlock(in_ch, e_ch*2, n_downscales=4, kernel_size=3, dilations=1)
self.down2 = DownscaleBlock(in_ch, e_ch*2, n_downscales=4, kernel_size=5, dilations=1)
self.down3 = DownscaleBlock(in_ch, e_ch//2, n_downscales=4, kernel_size=5, dilations=2)
self.down4 = DownscaleBlock(in_ch, e_ch//2, n_downscales=4, kernel_size=7, dilations=2)
else:
self.down1 = DownscaleBlock(in_ch, e_ch, n_downscales=4, kernel_size=5, dilations=1, subpixel=False)
def forward(self, inp):
if self.is_hd:
x = tf.concat([ nn.flatten(self.down1(inp)),
nn.flatten(self.down2(inp)),
nn.flatten(self.down3(inp)),
nn.flatten(self.down4(inp)) ], -1 )
else:
x = nn.flatten(self.down1(inp))
return x
lowest_dense_res = resolution // 16
class Inter(nn.ModelBase):
def __init__(self, in_ch, ae_ch, ae_out_ch, is_hd=False, **kwargs):
self.in_ch, self.ae_ch, self.ae_out_ch = in_ch, ae_ch, ae_out_ch
super().__init__(**kwargs)
def on_build(self):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
self.dense1 = nn.Dense( in_ch, ae_ch )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
self.upscale1 = Upscale(ae_out_ch, ae_out_ch)
def forward(self, inp):
x = self.dense1(inp)
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
x = self.upscale1(x)
return x
@staticmethod
def get_code_res():
return lowest_dense_res
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch, is_hd ):
self.is_hd = is_hd
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
if is_hd:
self.res0 = UpdownResidualBlock(in_ch, d_ch*8, kernel_size=3)
self.res1 = UpdownResidualBlock(d_ch*8, d_ch*4, kernel_size=3)
self.res2 = UpdownResidualBlock(d_ch*4, d_ch*2, kernel_size=3)
self.res3 = UpdownResidualBlock(d_ch*2, d_ch, kernel_size=3)
else:
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
if self.is_hd:
x, upx = self.res0(z)
x = self.upscale0(x)
x = tf.nn.leaky_relu(x + upx, 0.2)
x, upx = self.res1(x)
x = self.upscale1(x)
x = tf.nn.leaky_relu(x + upx, 0.2)
x, upx = self.res2(x)
x = self.upscale2(x)
x = tf.nn.leaky_relu(x + upx, 0.2)
x, upx = self.res3(x)
else:
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
x = self.res1(x)
x = self.upscale2(x)
x = self.res2(x)
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(m))
elif mod == 'chervonij':
class Downscale(nn.ModelBase):
def __init__(self, in_ch, kernel_size=3, dilations=1, *kwargs ):
self.in_ch = in_ch
self.kernel_size = kernel_size
self.dilations = dilations
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv_base1 = nn.Conv2D( self.in_ch, self.in_ch//2, kernel_size=1, strides=1, padding='SAME', dilations=self.dilations)
self.conv_l1 = nn.Conv2D( self.in_ch//2, self.in_ch//2, kernel_size=self.kernel_size, strides=1, padding='SAME', dilations=self.dilations)
self.conv_l2 = nn.Conv2D( self.in_ch//2, self.in_ch//2, kernel_size=self.kernel_size, strides=2, padding='SAME', dilations=self.dilations)
self.conv_base2 = nn.Conv2D( self.in_ch, self.in_ch//2, kernel_size=1, strides=1, padding='SAME', dilations=self.dilations)
self.conv_r1 = nn.Conv2D( self.in_ch//2, self.in_ch//2, kernel_size=self.kernel_size, strides=2, padding='SAME', dilations=self.dilations)
self.pool_size = [1,1,2,2] if nn.data_format == 'NCHW' else [1,2,2,1]
def forward(self, x):
x_l = self.conv_base1(x)
x_l = self.conv_l1(x_l)
x_l = self.conv_l2(x_l)
x_r = self.conv_base2(x)
x_r = self.conv_r1(x_r)
x_pool = tf.nn.max_pool(x, ksize=self.pool_size, strides=self.pool_size, padding='SAME', data_format=nn.data_format)
x = tf.concat([x_l, x_r, x_pool], axis=nn.conv2d_ch_axis)
x = tf.nn.leaky_relu(x, 0.1)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( out_ch, out_ch, kernel_size=kernel_size, padding='SAME')
self.conv3 = nn.Conv2D( out_ch, out_ch, kernel_size=kernel_size, padding='SAME')
self.conv4 = nn.Conv2D( out_ch, out_ch, kernel_size=kernel_size, padding='SAME')
def forward(self, x):
x0 = self.conv1(x)
x1 = self.conv2(x0)
x2 = self.conv3(x1)
x3 = self.conv4(x2)
x = tf.concat([x0, x1, x2, x3], axis=nn.conv2d_ch_axis)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.norm = nn.FRNorm2D(ch)
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = self.norm(inp + x)
x = tf.nn.leaky_relu(x, 0.2)
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, **kwargs):
self.conv0 = nn.Conv2D(in_ch, e_ch, kernel_size=3, padding='SAME')
self.down0 = Downscale(e_ch)
self.down1 = Downscale(e_ch*2)
self.down2 = Downscale(e_ch*4)
self.down3 = Downscale(e_ch*8)
self.down4 = Downscale(e_ch*16)
def forward(self, inp):
x = self.conv0(inp)
x = self.down0(x)
x = self.down1(x)
x = self.down2(x)
x = self.down3(x)
x = self.down4(x)
x = nn.flatten(x)
return x
lowest_dense_res = resolution // 32
class Inter(nn.ModelBase):
def __init__(self, in_ch, ae_ch, ae_out_ch, **kwargs):
self.in_ch, self.ae_ch, self.ae_out_ch = in_ch, ae_ch, ae_out_ch
super().__init__(**kwargs)
def on_build(self, **kwargs):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
self.dense_l = nn.Dense( in_ch, ae_ch//2, kernel_initializer=tf.initializers.orthogonal)
self.dense_r = nn.Dense( in_ch, ae_ch//2, kernel_initializer=tf.initializers.orthogonal)#maxout_ch=4,
self.dense = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * (ae_out_ch//2), kernel_initializer=tf.initializers.orthogonal)
self.upscale1 = Upscale(ae_out_ch//2, ae_out_ch//2)
def forward(self, inp):
x0 = self.dense_l(inp)
x1 = self.dense_r(inp)
x = tf.concat([x0, x1], axis=-1)
x = self.dense(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch//2)
x = self.upscale1(x)
return x
def get_out_ch(self):
return self.ae_out_ch//2
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch, **kwargs):
self.upscale0 = Upscale(in_ch, d_ch*8)
self.upscale1 = Upscale(d_ch*8, d_ch*4)
self.upscale2 = Upscale(d_ch*4, d_ch*2)
self.upscale3 = Upscale(d_ch*2, d_ch)
self.res0 = ResidualBlock(d_ch*8)
self.res1 = ResidualBlock(d_ch*4)
self.res2 = ResidualBlock(d_ch*2)
self.res3 = ResidualBlock(d_ch)
self.out_conv = nn.Conv2D( d_ch, 3, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
x = self.res1(x)
x = self.upscale2(x)
x = self.res2(x)
x = self.upscale3(x)
x = self.res3(x)
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
m = self.upscalem3(m)
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(m))
elif mod == 'quick':
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.dilations = dilations
self.subpixel = subpixel
self.use_activator = use_activator
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch,
self.out_ch // (4 if self.subpixel else 1),
kernel_size=self.kernel_size,
strides=1 if self.subpixel else 2,
padding='SAME', dilations=self.dilations )
def forward(self, x):
x = self.conv1(x)
if self.subpixel:
x = nn.space_to_depth(x, 2)
if self.use_activator:
x = nn.gelu(x)
return x
def get_out_ch(self):
return (self.out_ch // 4) * 4
class DownscaleBlock(nn.ModelBase):
def on_build(self, in_ch, ch, n_downscales, kernel_size, dilations=1, subpixel=True):
self.downs = []
last_ch = in_ch
for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size, dilations=dilations, subpixel=subpixel) )
last_ch = self.downs[-1].get_out_ch()
def forward(self, inp):
x = inp
for down in self.downs:
x = down(x)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
def forward(self, x):
x = self.conv1(x)
x = nn.gelu(x)
x = nn.depth_to_space(x, 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
def forward(self, inp):
x = self.conv1(inp)
x = nn.gelu(x)
x = self.conv2(x)
x = inp + x
x = nn.gelu(x)
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch):
self.down1 = DownscaleBlock(in_ch, e_ch, n_downscales=4, kernel_size=5)
def forward(self, inp):
return nn.flatten(self.down1(inp))
lowest_dense_res = resolution // 16
class Inter(nn.ModelBase):
def __init__(self, in_ch, ae_ch, ae_out_ch, d_ch, **kwargs):
self.in_ch, self.ae_ch, self.ae_out_ch, self.d_ch = in_ch, ae_ch, ae_out_ch, d_ch
super().__init__(**kwargs)
def on_build(self):
in_ch, ae_ch, ae_out_ch, d_ch = self.in_ch, self.ae_ch, self.ae_out_ch, self.d_ch
self.dense1 = nn.Dense( in_ch, ae_ch, kernel_initializer=tf.initializers.orthogonal )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch, kernel_initializer=tf.initializers.orthogonal )
self.upscale1 = Upscale(ae_out_ch, d_ch*8)
self.res1 = ResidualBlock(d_ch*8)
def forward(self, inp):
x = self.dense1(inp)
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
x = self.upscale1(x)
x = self.res1(x)
return x
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch):
self.upscale1 = Upscale(in_ch, d_ch*4)
self.res1 = ResidualBlock(d_ch*4)
self.upscale2 = Upscale(d_ch*4, d_ch*2)
self.res2 = ResidualBlock(d_ch*2)
self.upscale3 = Upscale(d_ch*2, d_ch*1)
self.res3 = ResidualBlock(d_ch*1)
self.upscalem1 = Upscale(in_ch, d_ch)
self.upscalem2 = Upscale(d_ch, d_ch//2)
self.upscalem3 = Upscale(d_ch//2, d_ch//2)
self.out_conv = nn.Conv2D( d_ch*1, 3, kernel_size=1, padding='SAME')
self.out_convm = nn.Conv2D( d_ch//2, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
x = self.upscale1 (z)
x = self.res1 (x)
x = self.upscale2 (x)
x = self.res2 (x)
x = self.upscale3 (x)
x = self.res3 (x)
y = self.upscalem1 (z)
y = self.upscalem2 (y)
y = self.upscalem3 (y)
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(y))
self.Encoder = Encoder
self.Inter = Inter
self.Decoder = Decoder
nn.DeepFakeArchi = DeepFakeArchi