mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time. SAE: previous SAE model will not work with this update. Greatly decreased chance of model collapse. Increased model accuracy. Residual blocks now default and this option has been removed. Improved 'learn mask'. Added masked preview (switch by space key) Converter: fixed rct/lct in seamless mode added mask mode (6) learned*FAN-prd*FAN-dst added mask editor, its created for refining dataset for FANSeg model, and not for production, but you can spend your time and test it in regular fakes with face obstructions
218 lines
10 KiB
Python
218 lines
10 KiB
Python
from enum import IntEnum
|
|
import numpy as np
|
|
import cv2
|
|
import imagelib
|
|
from facelib import LandmarksProcessor
|
|
from facelib import FaceType
|
|
|
|
|
|
class SampleProcessor(object):
|
|
class TypeFlags(IntEnum):
|
|
SOURCE = 0x00000001,
|
|
WARPED = 0x00000002,
|
|
WARPED_TRANSFORMED = 0x00000004,
|
|
TRANSFORMED = 0x00000008,
|
|
LANDMARKS_ARRAY = 0x00000010, #currently unused
|
|
|
|
RANDOM_CLOSE = 0x00000020,
|
|
MORPH_TO_RANDOM_CLOSE = 0x00000040,
|
|
|
|
FACE_ALIGN_HALF = 0x00000100,
|
|
FACE_ALIGN_FULL = 0x00000200,
|
|
FACE_ALIGN_HEAD = 0x00000400,
|
|
FACE_ALIGN_AVATAR = 0x00000800,
|
|
|
|
FACE_MASK_FULL = 0x00001000,
|
|
FACE_MASK_EYES = 0x00002000,
|
|
|
|
MODE_BGR = 0x01000000, #BGR
|
|
MODE_G = 0x02000000, #Grayscale
|
|
MODE_GGG = 0x04000000, #3xGrayscale
|
|
MODE_M = 0x08000000, #mask only
|
|
MODE_BGR_SHUFFLE = 0x10000000, #BGR shuffle
|
|
|
|
class Options(object):
|
|
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05]):
|
|
self.random_flip = random_flip
|
|
self.normalize_tanh = normalize_tanh
|
|
self.rotation_range = rotation_range
|
|
self.scale_range = scale_range
|
|
self.tx_range = tx_range
|
|
self.ty_range = ty_range
|
|
|
|
@staticmethod
|
|
def process (sample, sample_process_options, output_sample_types, debug):
|
|
sample_bgr = sample.load_bgr()
|
|
h,w,c = sample_bgr.shape
|
|
|
|
is_face_sample = sample.landmarks is not None
|
|
|
|
if debug and is_face_sample:
|
|
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
|
|
|
|
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
|
|
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
|
|
|
|
if debug and close_sample_bgr is not None:
|
|
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
|
|
|
|
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
|
|
|
images = [[None]*3 for _ in range(30)]
|
|
|
|
sample_rnd_seed = np.random.randint(0x80000000)
|
|
|
|
outputs = []
|
|
for sample_type in output_sample_types:
|
|
f = sample_type[0]
|
|
size = sample_type[1]
|
|
random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
|
|
|
|
if f & SampleProcessor.TypeFlags.SOURCE != 0:
|
|
img_type = 0
|
|
elif f & SampleProcessor.TypeFlags.WARPED != 0:
|
|
img_type = 1
|
|
elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
|
|
img_type = 2
|
|
elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
|
|
img_type = 3
|
|
elif f & SampleProcessor.TypeFlags.LANDMARKS_ARRAY != 0:
|
|
img_type = 4
|
|
else:
|
|
raise ValueError ('expected SampleTypeFlags type')
|
|
|
|
if f & SampleProcessor.TypeFlags.RANDOM_CLOSE != 0:
|
|
img_type += 10
|
|
elif f & SampleProcessor.TypeFlags.MORPH_TO_RANDOM_CLOSE != 0:
|
|
img_type += 20
|
|
|
|
face_mask_type = 0
|
|
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
|
|
face_mask_type = 1
|
|
elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
|
|
face_mask_type = 2
|
|
|
|
target_face_type = -1
|
|
if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
|
|
target_face_type = FaceType.HALF
|
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
|
|
target_face_type = FaceType.FULL
|
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
|
|
target_face_type = FaceType.HEAD
|
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
|
|
target_face_type = FaceType.AVATAR
|
|
|
|
if img_type == 4:
|
|
l = sample.landmarks
|
|
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
|
l = np.clip(l, 0.0, 1.0)
|
|
img = l
|
|
else:
|
|
if images[img_type][face_mask_type] is None:
|
|
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
|
img_type -= 10
|
|
img = close_sample_bgr
|
|
cur_sample = close_sample
|
|
|
|
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
|
img_type -= 20
|
|
res = sample.shape[0]
|
|
|
|
s_landmarks = sample.landmarks.copy()
|
|
d_landmarks = close_sample.landmarks.copy()
|
|
idxs = list(range(len(s_landmarks)))
|
|
#remove landmarks near boundaries
|
|
for i in idxs[:]:
|
|
s_l = s_landmarks[i]
|
|
d_l = d_landmarks[i]
|
|
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
|
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
|
idxs.remove(i)
|
|
#remove landmarks that close to each other in 5 dist
|
|
for landmarks in [s_landmarks, d_landmarks]:
|
|
for i in idxs[:]:
|
|
s_l = landmarks[i]
|
|
for j in idxs[:]:
|
|
if i == j:
|
|
continue
|
|
s_l_2 = landmarks[j]
|
|
diff_l = np.abs(s_l - s_l_2)
|
|
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
|
idxs.remove(i)
|
|
break
|
|
s_landmarks = s_landmarks[idxs]
|
|
d_landmarks = d_landmarks[idxs]
|
|
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
|
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
|
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
|
cur_sample = close_sample
|
|
else:
|
|
img = sample_bgr
|
|
cur_sample = sample
|
|
|
|
if is_face_sample:
|
|
if face_mask_type == 1:
|
|
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks, cur_sample.ie_polys) ), -1 )
|
|
elif face_mask_type == 2:
|
|
mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
|
|
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
|
mask[mask > 0.0] = 1.0
|
|
img = np.concatenate( (img, mask ), -1 )
|
|
|
|
images[img_type][face_mask_type] = imagelib.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0)
|
|
|
|
img = images[img_type][face_mask_type]
|
|
|
|
if is_face_sample and target_face_type != -1:
|
|
if target_face_type > sample.face_type:
|
|
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
|
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_CUBIC )
|
|
else:
|
|
img = cv2.resize( img, (size,size), cv2.INTER_CUBIC )
|
|
|
|
if random_sub_size != 0:
|
|
sub_size = size - random_sub_size
|
|
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
|
|
start_x = rnd_state.randint(sub_size+1)
|
|
start_y = rnd_state.randint(sub_size+1)
|
|
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
|
|
|
img_bgr = img[...,0:3]
|
|
img_mask = img[...,3:4]
|
|
|
|
if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
|
|
img = img
|
|
elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
|
|
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
|
|
img = np.concatenate ( (img_bgr,img_mask) , -1 )
|
|
elif f & SampleProcessor.TypeFlags.MODE_G != 0:
|
|
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
|
elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
|
|
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
|
elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
|
|
if face_mask_type== 0:
|
|
raise ValueError ('no face_mask_type defined')
|
|
img = img_mask
|
|
else:
|
|
raise ValueError ('expected SampleTypeFlags mode')
|
|
|
|
if not debug:
|
|
if sample_process_options.normalize_tanh:
|
|
img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
|
|
else:
|
|
img = np.clip (img, 0.0, 1.0)
|
|
|
|
outputs.append ( img )
|
|
|
|
if debug:
|
|
result = []
|
|
|
|
for output in outputs:
|
|
if output.shape[2] < 4:
|
|
result += [output,]
|
|
elif output.shape[2] == 4:
|
|
result += [output[...,0:3]*output[...,3:4],]
|
|
|
|
return result
|
|
else:
|
|
return outputs
|