mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time. SAE: previous SAE model will not work with this update. Greatly decreased chance of model collapse. Increased model accuracy. Residual blocks now default and this option has been removed. Improved 'learn mask'. Added masked preview (switch by space key) Converter: fixed rct/lct in seamless mode added mask mode (6) learned*FAN-prd*FAN-dst added mask editor, its created for refining dataset for FANSeg model, and not for production, but you can spend your time and test it in regular fakes with face obstructions
307 lines
12 KiB
Python
307 lines
12 KiB
Python
import sys
|
|
import traceback
|
|
import queue
|
|
import threading
|
|
import time
|
|
import numpy as np
|
|
import itertools
|
|
from pathlib import Path
|
|
from utils import Path_utils
|
|
import imagelib
|
|
import cv2
|
|
import models
|
|
from interact import interact as io
|
|
|
|
def trainerThread (s2c, c2s, args, device_args):
|
|
while True:
|
|
try:
|
|
start_time = time.time()
|
|
|
|
training_data_src_path = Path( args.get('training_data_src_dir', '') )
|
|
training_data_dst_path = Path( args.get('training_data_dst_dir', '') )
|
|
model_path = Path( args.get('model_path', '') )
|
|
model_name = args.get('model_name', '')
|
|
save_interval_min = 15
|
|
debug = args.get('debug', '')
|
|
execute_programs = args.get('execute_programs', [])
|
|
|
|
if not training_data_src_path.exists():
|
|
io.log_err('Training data src directory does not exist.')
|
|
break
|
|
|
|
if not training_data_dst_path.exists():
|
|
io.log_err('Training data dst directory does not exist.')
|
|
break
|
|
|
|
if not model_path.exists():
|
|
model_path.mkdir(exist_ok=True)
|
|
|
|
model = models.import_model(model_name)(
|
|
model_path,
|
|
training_data_src_path=training_data_src_path,
|
|
training_data_dst_path=training_data_dst_path,
|
|
debug=debug,
|
|
device_args=device_args)
|
|
|
|
is_reached_goal = model.is_reached_iter_goal()
|
|
|
|
shared_state = { 'after_save' : False }
|
|
loss_string = ""
|
|
save_iter = model.get_iter()
|
|
def model_save():
|
|
if not debug and not is_reached_goal:
|
|
io.log_info ("Saving....", end='\r')
|
|
model.save()
|
|
shared_state['after_save'] = True
|
|
|
|
def send_preview():
|
|
if not debug:
|
|
previews = model.get_previews()
|
|
c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } )
|
|
else:
|
|
previews = [( 'debug, press update for new', model.debug_one_iter())]
|
|
c2s.put ( {'op':'show', 'previews': previews} )
|
|
|
|
|
|
if model.is_first_run():
|
|
model_save()
|
|
|
|
if model.get_target_iter() != 0:
|
|
if is_reached_goal:
|
|
io.log_info('Model already trained to target iteration. You can use preview.')
|
|
else:
|
|
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter() ) )
|
|
else:
|
|
io.log_info('Starting. Press "Enter" to stop training and save model.')
|
|
|
|
last_save_time = time.time()
|
|
|
|
for i in itertools.count(0,1):
|
|
if not debug:
|
|
cur_time = time.time()
|
|
|
|
for x in execute_programs:
|
|
prog_time, prog = x
|
|
if prog_time != 0 and (cur_time - start_time) >= prog_time:
|
|
x[0] = 0
|
|
try:
|
|
exec(prog)
|
|
except Exception as e:
|
|
print("Unable to execute program: %s" % (prog) )
|
|
|
|
if not is_reached_goal:
|
|
iter, iter_time = model.train_one_iter()
|
|
|
|
loss_history = model.get_loss_history()
|
|
time_str = time.strftime("[%H:%M:%S]")
|
|
if iter_time >= 10:
|
|
loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, iter, '{:0.4f}'.format(iter_time) )
|
|
else:
|
|
loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, iter, int(iter_time*1000) )
|
|
|
|
if shared_state['after_save']:
|
|
shared_state['after_save'] = False
|
|
last_save_time = time.time() #upd last_save_time only after save+one_iter, because plaidML rebuilds programs after save https://github.com/plaidml/plaidml/issues/274
|
|
|
|
mean_loss = np.mean ( [ np.array(loss_history[i]) for i in range(save_iter, iter) ], axis=0)
|
|
|
|
for loss_value in mean_loss:
|
|
loss_string += "[%.4f]" % (loss_value)
|
|
|
|
io.log_info (loss_string)
|
|
|
|
save_iter = iter
|
|
else:
|
|
for loss_value in loss_history[-1]:
|
|
loss_string += "[%.4f]" % (loss_value)
|
|
|
|
if io.is_colab():
|
|
io.log_info ('\r' + loss_string, end='')
|
|
else:
|
|
io.log_info (loss_string, end='\r')
|
|
|
|
if model.get_target_iter() != 0 and model.is_reached_iter_goal():
|
|
io.log_info ('Reached target iteration.')
|
|
model_save()
|
|
is_reached_goal = True
|
|
io.log_info ('You can use preview now.')
|
|
|
|
if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min*60:
|
|
model_save()
|
|
send_preview()
|
|
|
|
if i==0:
|
|
if is_reached_goal:
|
|
model.pass_one_iter()
|
|
send_preview()
|
|
|
|
if debug:
|
|
time.sleep(0.005)
|
|
|
|
while not s2c.empty():
|
|
input = s2c.get()
|
|
op = input['op']
|
|
if op == 'save':
|
|
model_save()
|
|
elif op == 'preview':
|
|
if is_reached_goal:
|
|
model.pass_one_iter()
|
|
send_preview()
|
|
elif op == 'close':
|
|
model_save()
|
|
i = -1
|
|
break
|
|
|
|
if i == -1:
|
|
break
|
|
|
|
|
|
|
|
model.finalize()
|
|
|
|
except Exception as e:
|
|
print ('Error: %s' % (str(e)))
|
|
traceback.print_exc()
|
|
break
|
|
c2s.put ( {'op':'close'} )
|
|
|
|
|
|
|
|
def main(args, device_args):
|
|
io.log_info ("Running trainer.\r\n")
|
|
|
|
no_preview = args.get('no_preview', False)
|
|
|
|
s2c = queue.Queue()
|
|
c2s = queue.Queue()
|
|
|
|
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, args, device_args) )
|
|
thread.start()
|
|
|
|
if no_preview:
|
|
while True:
|
|
if not c2s.empty():
|
|
input = c2s.get()
|
|
op = input.get('op','')
|
|
if op == 'close':
|
|
break
|
|
io.process_messages(0.1)
|
|
else:
|
|
wnd_name = "Training preview"
|
|
io.named_window(wnd_name)
|
|
io.capture_keys(wnd_name)
|
|
|
|
previews = None
|
|
loss_history = None
|
|
selected_preview = 0
|
|
update_preview = False
|
|
is_showing = False
|
|
is_waiting_preview = False
|
|
show_last_history_iters_count = 0
|
|
iter = 0
|
|
while True:
|
|
if not c2s.empty():
|
|
input = c2s.get()
|
|
op = input['op']
|
|
if op == 'show':
|
|
is_waiting_preview = False
|
|
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
|
previews = input['previews'] if 'previews' in input.keys() else None
|
|
iter = input['iter'] if 'iter' in input.keys() else 0
|
|
if previews is not None:
|
|
max_w = 0
|
|
max_h = 0
|
|
for (preview_name, preview_rgb) in previews:
|
|
(h, w, c) = preview_rgb.shape
|
|
max_h = max (max_h, h)
|
|
max_w = max (max_w, w)
|
|
|
|
max_size = 800
|
|
if max_h > max_size:
|
|
max_w = int( max_w / (max_h / max_size) )
|
|
max_h = max_size
|
|
|
|
#make all previews size equal
|
|
for preview in previews[:]:
|
|
(preview_name, preview_rgb) = preview
|
|
(h, w, c) = preview_rgb.shape
|
|
if h != max_h or w != max_w:
|
|
previews.remove(preview)
|
|
previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) )
|
|
selected_preview = selected_preview % len(previews)
|
|
update_preview = True
|
|
elif op == 'close':
|
|
break
|
|
|
|
if update_preview:
|
|
update_preview = False
|
|
|
|
selected_preview_name = previews[selected_preview][0]
|
|
selected_preview_rgb = previews[selected_preview][1]
|
|
(h,w,c) = selected_preview_rgb.shape
|
|
|
|
# HEAD
|
|
head_lines = [
|
|
'[s]:save [enter]:exit',
|
|
'[p]:update [space]:next preview [l]:change history range',
|
|
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
|
|
]
|
|
head_line_height = 15
|
|
head_height = len(head_lines) * head_line_height
|
|
head = np.ones ( (head_height,w,c) ) * 0.1
|
|
|
|
for i in range(0, len(head_lines)):
|
|
t = i*head_line_height
|
|
b = (i+1)*head_line_height
|
|
head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c )
|
|
|
|
final = head
|
|
|
|
if loss_history is not None:
|
|
if show_last_history_iters_count == 0:
|
|
loss_history_to_show = loss_history
|
|
else:
|
|
loss_history_to_show = loss_history[-show_last_history_iters_count:]
|
|
|
|
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, w, c)
|
|
final = np.concatenate ( [final, lh_img], axis=0 )
|
|
|
|
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
|
|
final = np.clip(final, 0, 1)
|
|
|
|
io.show_image( wnd_name, (final*255).astype(np.uint8) )
|
|
is_showing = True
|
|
|
|
key_events = io.get_key_events(wnd_name)
|
|
key, = key_events[-1] if len(key_events) > 0 else (0,)
|
|
|
|
if key == ord('\n') or key == ord('\r'):
|
|
s2c.put ( {'op': 'close'} )
|
|
elif key == ord('s'):
|
|
s2c.put ( {'op': 'save'} )
|
|
elif key == ord('p'):
|
|
if not is_waiting_preview:
|
|
is_waiting_preview = True
|
|
s2c.put ( {'op': 'preview'} )
|
|
elif key == ord('l'):
|
|
if show_last_history_iters_count == 0:
|
|
show_last_history_iters_count = 5000
|
|
elif show_last_history_iters_count == 5000:
|
|
show_last_history_iters_count = 10000
|
|
elif show_last_history_iters_count == 10000:
|
|
show_last_history_iters_count = 50000
|
|
elif show_last_history_iters_count == 50000:
|
|
show_last_history_iters_count = 100000
|
|
elif show_last_history_iters_count == 100000:
|
|
show_last_history_iters_count = 0
|
|
update_preview = True
|
|
elif key == ord(' '):
|
|
selected_preview = (selected_preview + 1) % len(previews)
|
|
update_preview = True
|
|
|
|
try:
|
|
io.process_messages(0.1)
|
|
except KeyboardInterrupt:
|
|
s2c.put ( {'op': 'close'} )
|
|
|
|
io.destroy_all_windows()
|