DeepFaceLab/samplelib/SampleProcessor.py

239 lines
11 KiB
Python

from enum import IntEnum
import numpy as np
import cv2
import imagelib
from facelib import LandmarksProcessor
from facelib import FaceType
class SampleProcessor(object):
class TypeFlags(IntEnum):
SOURCE = 0x00000001,
WARPED = 0x00000002,
WARPED_TRANSFORMED = 0x00000004,
TRANSFORMED = 0x00000008,
LANDMARKS_ARRAY = 0x00000010, #currently unused
RANDOM_CLOSE = 0x00000020, #currently unused
MORPH_TO_RANDOM_CLOSE = 0x00000040, #currently unused
FACE_TYPE_HALF = 0x00000100,
FACE_TYPE_FULL = 0x00000200,
FACE_TYPE_HEAD = 0x00000400, #currently unused
FACE_TYPE_AVATAR = 0x00000800, #currently unused
FACE_MASK_FULL = 0x00001000,
FACE_MASK_EYES = 0x00002000, #currently unused
MODE_BGR = 0x00010000, #BGR
MODE_G = 0x00020000, #Grayscale
MODE_GGG = 0x00040000, #3xGrayscale
MODE_M = 0x00080000, #mask only
MODE_BGR_SHUFFLE = 0x00100000, #BGR shuffle
OPT_APPLY_MOTION_BLUR = 0x10000000,
class Options(object):
#motion_blur = [chance_int, range] - chance 0..100 to apply to face (not mask), and range [1..3] where 3 is highest power of motion blur
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], motion_blur=None ):
self.random_flip = random_flip
self.normalize_tanh = normalize_tanh
self.rotation_range = rotation_range
self.scale_range = scale_range
self.tx_range = tx_range
self.ty_range = ty_range
self.motion_blur = motion_blur
if self.motion_blur is not None:
chance, range = self.motion_blur
chance = np.clip(chance, 0, 100)
range = [3,5,7,9][ : np.clip(range, 0, 3)+1 ]
self.motion_blur = (chance, range)
@staticmethod
def process (sample, sample_process_options, output_sample_types, debug):
SPTF = SampleProcessor.TypeFlags
sample_bgr = sample.load_bgr()
h,w,c = sample_bgr.shape
is_face_sample = sample.landmarks is not None
if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
if debug and close_sample_bgr is not None:
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
images = [[None]*3 for _ in range(30)]
sample_rnd_seed = np.random.randint(0x80000000)
outputs = []
for sample_type in output_sample_types:
f = sample_type[0]
size = sample_type[1]
random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
if f & SPTF.SOURCE != 0:
img_type = 0
elif f & SPTF.WARPED != 0:
img_type = 1
elif f & SPTF.WARPED_TRANSFORMED != 0:
img_type = 2
elif f & SPTF.TRANSFORMED != 0:
img_type = 3
elif f & SPTF.LANDMARKS_ARRAY != 0:
img_type = 4
else:
raise ValueError ('expected SampleTypeFlags type')
if f & SPTF.RANDOM_CLOSE != 0:
img_type += 10
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
img_type += 20
face_mask_type = 0
if f & SPTF.FACE_MASK_FULL != 0:
face_mask_type = 1
elif f & SPTF.FACE_MASK_EYES != 0:
face_mask_type = 2
target_face_type = -1
if f & SPTF.FACE_TYPE_HALF != 0:
target_face_type = FaceType.HALF
elif f & SPTF.FACE_TYPE_FULL != 0:
target_face_type = FaceType.FULL
elif f & SPTF.FACE_TYPE_HEAD != 0:
target_face_type = FaceType.HEAD
elif f & SPTF.FACE_TYPE_AVATAR != 0:
target_face_type = FaceType.AVATAR
apply_motion_blur = f & SPTF.OPT_APPLY_MOTION_BLUR != 0
if img_type == 4:
l = sample.landmarks
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
l = np.clip(l, 0.0, 1.0)
img = l
else:
if images[img_type][face_mask_type] is None:
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
img_type -= 10
img = close_sample_bgr
cur_sample = close_sample
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
img_type -= 20
res = sample.shape[0]
s_landmarks = sample.landmarks.copy()
d_landmarks = close_sample.landmarks.copy()
idxs = list(range(len(s_landmarks)))
#remove landmarks near boundaries
for i in idxs[:]:
s_l = s_landmarks[i]
d_l = d_landmarks[i]
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
idxs.remove(i)
#remove landmarks that close to each other in 5 dist
for landmarks in [s_landmarks, d_landmarks]:
for i in idxs[:]:
s_l = landmarks[i]
for j in idxs[:]:
if i == j:
continue
s_l_2 = landmarks[j]
diff_l = np.abs(s_l - s_l_2)
if np.sqrt(diff_l.dot(diff_l)) < 5:
idxs.remove(i)
break
s_landmarks = s_landmarks[idxs]
d_landmarks = d_landmarks[idxs]
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
cur_sample = close_sample
else:
img = sample_bgr
cur_sample = sample
if is_face_sample:
if apply_motion_blur and sample_process_options.motion_blur is not None:
chance, mb_range = sample_process_options.motion_blur
if np.random.randint(100) < chance :
dim = mb_range[ np.random.randint(len(mb_range) ) ]
img = imagelib.LinearMotionBlur (img, dim, np.random.randint(180) )
if face_mask_type == 1:
mask = LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks, cur_sample.ie_polys)
img = np.concatenate( (img, mask ), -1 )
elif face_mask_type == 2:
mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
mask[mask > 0.0] = 1.0
img = np.concatenate( (img, mask ), -1 )
images[img_type][face_mask_type] = imagelib.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0)
img = images[img_type][face_mask_type]
if is_face_sample and target_face_type != -1:
if target_face_type > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_CUBIC )
else:
img = cv2.resize( img, (size,size), cv2.INTER_CUBIC )
if random_sub_size != 0:
sub_size = size - random_sub_size
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
start_x = rnd_state.randint(sub_size+1)
start_y = rnd_state.randint(sub_size+1)
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
img_bgr = img[...,0:3]
img_mask = img[...,3:4]
if f & SPTF.MODE_BGR != 0:
img = img
elif f & SPTF.MODE_BGR_SHUFFLE != 0:
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
img = np.concatenate ( (img_bgr,img_mask) , -1 )
elif f & SPTF.MODE_G != 0:
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
elif f & SPTF.MODE_GGG != 0:
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
elif is_face_sample and f & SPTF.MODE_M != 0:
if face_mask_type== 0:
raise ValueError ('no face_mask_type defined')
img = img_mask
else:
raise ValueError ('expected SampleTypeFlags mode')
if not debug:
if sample_process_options.normalize_tanh:
img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
else:
img = np.clip (img, 0.0, 1.0)
outputs.append ( img )
if debug:
result = []
for output in outputs:
if output.shape[2] < 4:
result += [output,]
elif output.shape[2] == 4:
result += [output[...,0:3]*output[...,3:4],]
return result
else:
return outputs