DeepFaceLab/samplelib/SampleGeneratorFace.py
Colombo 50f892d57d all models: removed options 'src_scale_mod', and 'sort samples by yaw as target'
If you want, you can manually remove unnecessary angles from src faceset after sort by yaw.

Optimized sample generators (CPU workers). Now they consume less amount of RAM and work faster.

added
4.2.other) data_src/dst util faceset pack.bat
	Packs /aligned/ samples into one /aligned/samples.pak file.
	After that, all faces will be deleted.

4.2.other) data_src/dst util faceset unpack.bat
	unpacks faces from /aligned/samples.pak to /aligned/ dir.
	After that, samples.pak will be deleted.

Packed faceset load and work faster.
2019-12-21 23:16:55 +04:00

102 lines
No EOL
4 KiB
Python

import multiprocessing
import traceback
import cv2
import numpy as np
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
SampleType)
from utils import iter_utils
from utils import mp_utils
'''
arg
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
class SampleGeneratorFace(SampleGeneratorBase):
def __init__ (self, samples_path, debug=False, batch_size=1,
random_ct_samples_path=None,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
add_sample_idx=False,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.add_sample_idx = add_sample_idx
samples_host = SampleHost.mp_host (SampleType.FACE, self.samples_path)
self.samples_len = len(samples_host)
if self.samples_len == 0:
raise ValueError('No training data provided.')
index_host = mp_utils.IndexHost(self.samples_len)
if random_ct_samples_path is not None:
ct_samples_host = SampleHost.mp_host (SampleType.FACE, random_ct_samples_path)
ct_index_host = mp_utils.IndexHost( len(ct_samples_host) )
else:
ct_samples_host = None
ct_index_host = None
if self.debug:
self.generators_count = 1
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index_host.create_cli(), ct_samples_host.create_cli() if ct_index_host is not None else None, ct_index_host.create_cli() if ct_index_host is not None else None) )]
else:
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index_host.create_cli(), ct_samples_host.create_cli() if ct_index_host is not None else None, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=True ) for i in range(self.generators_count) ]
self.generator_counter = -1
#overridable
def get_total_sample_count(self):
return self.samples_len
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
samples, index_host, ct_samples, ct_index_host = param
bs = self.batch_size
while True:
batches = None
indexes = index_host.get(bs)
ct_indexes = ct_index_host.get(bs) if ct_samples is not None else None
for n_batch in range(bs):
sample = samples[ indexes[n_batch] ]
ct_sample = ct_samples[ ct_indexes[n_batch] ] if ct_samples is not None else None
try:
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(x)) ]
if self.add_sample_idx:
batches += [ [] ]
i_sample_idx = len(batches)-1
for i in range(len(x)):
batches[i].append ( x[i] )
if self.add_sample_idx:
batches[i_sample_idx].append (idx)
yield [ np.array(batch) for batch in batches]
@staticmethod
def get_person_id_max_count(samples_path):
return SampleHost.get_person_id_max_count(samples_path)