DeepFaceLab/facelib/S3FDExtractor.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

269 lines
11 KiB
Python

import operator
from pathlib import Path
import cv2
import numpy as np
from core.leras import nn
class S3FDExtractor(object):
def __init__(self, place_model_on_cpu=False):
nn.initialize(data_format="NHWC")
tf = nn.tf
model_path = Path(__file__).parent / "S3FD.npy"
if not model_path.exists():
raise Exception("Unable to load S3FD.npy")
class L2Norm(nn.LayerBase):
def __init__(self, n_channels, **kwargs):
self.n_channels = n_channels
super().__init__(**kwargs)
def build_weights(self):
self.weight = tf.get_variable ("weight", (1, 1, 1, self.n_channels), dtype=nn.tf_floatx, initializer=tf.initializers.ones )
def get_weights(self):
return [self.weight]
def __call__(self, inputs):
x = inputs
x = x / (tf.sqrt( tf.reduce_sum( tf.pow(x, 2), axis=-1, keepdims=True ) ) + 1e-10) * self.weight
return x
class S3FD(nn.ModelBase):
def __init__(self):
super().__init__(name='S3FD')
def on_build(self):
self.minus = tf.constant([104,117,123], dtype=nn.tf_floatx )
self.conv1_1 = nn.Conv2D(3, 64, kernel_size=3, strides=1, padding='SAME')
self.conv1_2 = nn.Conv2D(64, 64, kernel_size=3, strides=1, padding='SAME')
self.conv2_1 = nn.Conv2D(64, 128, kernel_size=3, strides=1, padding='SAME')
self.conv2_2 = nn.Conv2D(128, 128, kernel_size=3, strides=1, padding='SAME')
self.conv3_1 = nn.Conv2D(128, 256, kernel_size=3, strides=1, padding='SAME')
self.conv3_2 = nn.Conv2D(256, 256, kernel_size=3, strides=1, padding='SAME')
self.conv3_3 = nn.Conv2D(256, 256, kernel_size=3, strides=1, padding='SAME')
self.conv4_1 = nn.Conv2D(256, 512, kernel_size=3, strides=1, padding='SAME')
self.conv4_2 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
self.conv4_3 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
self.conv5_1 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
self.conv5_2 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
self.conv5_3 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME')
self.fc6 = nn.Conv2D(512, 1024, kernel_size=3, strides=1, padding=3)
self.fc7 = nn.Conv2D(1024, 1024, kernel_size=1, strides=1, padding='SAME')
self.conv6_1 = nn.Conv2D(1024, 256, kernel_size=1, strides=1, padding='SAME')
self.conv6_2 = nn.Conv2D(256, 512, kernel_size=3, strides=2, padding='SAME')
self.conv7_1 = nn.Conv2D(512, 128, kernel_size=1, strides=1, padding='SAME')
self.conv7_2 = nn.Conv2D(128, 256, kernel_size=3, strides=2, padding='SAME')
self.conv3_3_norm = L2Norm(256)
self.conv4_3_norm = L2Norm(512)
self.conv5_3_norm = L2Norm(512)
self.conv3_3_norm_mbox_conf = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME')
self.conv3_3_norm_mbox_loc = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME')
self.conv4_3_norm_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME')
self.conv4_3_norm_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME')
self.conv5_3_norm_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME')
self.conv5_3_norm_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME')
self.fc7_mbox_conf = nn.Conv2D(1024, 2, kernel_size=3, strides=1, padding='SAME')
self.fc7_mbox_loc = nn.Conv2D(1024, 4, kernel_size=3, strides=1, padding='SAME')
self.conv6_2_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME')
self.conv6_2_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME')
self.conv7_2_mbox_conf = nn.Conv2D(256, 2, kernel_size=3, strides=1, padding='SAME')
self.conv7_2_mbox_loc = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME')
def forward(self, inp):
x, = inp
x = x - self.minus
x = tf.nn.relu(self.conv1_1(x))
x = tf.nn.relu(self.conv1_2(x))
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
x = tf.nn.relu(self.conv2_1(x))
x = tf.nn.relu(self.conv2_2(x))
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
x = tf.nn.relu(self.conv3_1(x))
x = tf.nn.relu(self.conv3_2(x))
x = tf.nn.relu(self.conv3_3(x))
f3_3 = x
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
x = tf.nn.relu(self.conv4_1(x))
x = tf.nn.relu(self.conv4_2(x))
x = tf.nn.relu(self.conv4_3(x))
f4_3 = x
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
x = tf.nn.relu(self.conv5_1(x))
x = tf.nn.relu(self.conv5_2(x))
x = tf.nn.relu(self.conv5_3(x))
f5_3 = x
x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID")
x = tf.nn.relu(self.fc6(x))
x = tf.nn.relu(self.fc7(x))
ffc7 = x
x = tf.nn.relu(self.conv6_1(x))
x = tf.nn.relu(self.conv6_2(x))
f6_2 = x
x = tf.nn.relu(self.conv7_1(x))
x = tf.nn.relu(self.conv7_2(x))
f7_2 = x
f3_3 = self.conv3_3_norm(f3_3)
f4_3 = self.conv4_3_norm(f4_3)
f5_3 = self.conv5_3_norm(f5_3)
cls1 = self.conv3_3_norm_mbox_conf(f3_3)
reg1 = self.conv3_3_norm_mbox_loc(f3_3)
cls2 = tf.nn.softmax(self.conv4_3_norm_mbox_conf(f4_3))
reg2 = self.conv4_3_norm_mbox_loc(f4_3)
cls3 = tf.nn.softmax(self.conv5_3_norm_mbox_conf(f5_3))
reg3 = self.conv5_3_norm_mbox_loc(f5_3)
cls4 = tf.nn.softmax(self.fc7_mbox_conf(ffc7))
reg4 = self.fc7_mbox_loc(ffc7)
cls5 = tf.nn.softmax(self.conv6_2_mbox_conf(f6_2))
reg5 = self.conv6_2_mbox_loc(f6_2)
cls6 = tf.nn.softmax(self.conv7_2_mbox_conf(f7_2))
reg6 = self.conv7_2_mbox_loc(f7_2)
# max-out background label
bmax = tf.maximum(tf.maximum(cls1[:,:,:,0:1], cls1[:,:,:,1:2]), cls1[:,:,:,2:3])
cls1 = tf.concat ([bmax, cls1[:,:,:,3:4] ], axis=-1)
cls1 = tf.nn.softmax(cls1)
return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]
e = None
if place_model_on_cpu:
e = tf.device("/CPU:0")
if e is not None: e.__enter__()
self.model = S3FD()
self.model.load_weights (model_path)
if e is not None: e.__exit__(None,None,None)
self.model.build_for_run ([ ( tf.float32, nn.get4Dshape (None,None,3) ) ])
def __enter__(self):
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
return False #pass exception between __enter__ and __exit__ to outter level
def extract (self, input_image, is_bgr=True, is_remove_intersects=False):
if is_bgr:
input_image = input_image[:,:,::-1]
is_bgr = False
(h, w, ch) = input_image.shape
d = max(w, h)
scale_to = 640 if d >= 1280 else d / 2
scale_to = max(64, scale_to)
input_scale = d / scale_to
input_image = cv2.resize (input_image, ( int(w/input_scale), int(h/input_scale) ), interpolation=cv2.INTER_LINEAR)
olist = self.model.run ([ input_image[None,...] ] )
detected_faces = []
for ltrb in self.refine (olist):
l,t,r,b = [ x*input_scale for x in ltrb]
bt = b-t
if min(r-l,bt) < 40: #filtering faces < 40pix by any side
continue
b += bt*0.1 #enlarging bottom line a bit for 2DFAN-4, because default is not enough covering a chin
detected_faces.append ( [int(x) for x in (l,t,r,b) ] )
#sort by largest area first
detected_faces = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in detected_faces ]
detected_faces = sorted(detected_faces, key=operator.itemgetter(1), reverse=True )
detected_faces = [ x[0] for x in detected_faces]
if is_remove_intersects:
for i in range( len(detected_faces)-1, 0, -1):
l1,t1,r1,b1 = detected_faces[i]
l0,t0,r0,b0 = detected_faces[i-1]
dx = min(r0, r1) - max(l0, l1)
dy = min(b0, b1) - max(t0, t1)
if (dx>=0) and (dy>=0):
detected_faces.pop(i)
return detected_faces
def refine(self, olist):
bboxlist = []
for i, ((ocls,), (oreg,)) in enumerate ( zip ( olist[::2], olist[1::2] ) ):
stride = 2**(i + 2) # 4,8,16,32,64,128
s_d2 = stride / 2
s_m4 = stride * 4
for hindex, windex in zip(*np.where(ocls[...,1] > 0.05)):
score = ocls[hindex, windex, 1]
loc = oreg[hindex, windex, :]
priors = np.array([windex * stride + s_d2, hindex * stride + s_d2, s_m4, s_m4])
priors_2p = priors[2:]
box = np.concatenate((priors[:2] + loc[:2] * 0.1 * priors_2p,
priors_2p * np.exp(loc[2:] * 0.2)) )
box[:2] -= box[2:] / 2
box[2:] += box[:2]
bboxlist.append([*box, score])
bboxlist = np.array(bboxlist)
if len(bboxlist) == 0:
bboxlist = np.zeros((1, 5))
bboxlist = bboxlist[self.refine_nms(bboxlist, 0.3), :]
bboxlist = [ x[:-1].astype(np.int) for x in bboxlist if x[-1] >= 0.5]
return bboxlist
def refine_nms(self, dets, thresh):
keep = list()
if len(dets) == 0:
return keep
x_1, y_1, x_2, y_2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
areas = (x_2 - x_1 + 1) * (y_2 - y_1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx_1, yy_1 = np.maximum(x_1[i], x_1[order[1:]]), np.maximum(y_1[i], y_1[order[1:]])
xx_2, yy_2 = np.minimum(x_2[i], x_2[order[1:]]), np.minimum(y_2[i], y_2[order[1:]])
width, height = np.maximum(0.0, xx_2 - xx_1 + 1), np.maximum(0.0, yy_2 - yy_1 + 1)
ovr = width * height / (areas[i] + areas[order[1:]] - width * height)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep