mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
340 lines
No EOL
19 KiB
Python
340 lines
No EOL
19 KiB
Python
import traceback
|
|
from .Converter import Converter
|
|
from facelib import LandmarksProcessor
|
|
from facelib import FaceType
|
|
import cv2
|
|
import numpy as np
|
|
from utils import image_utils
|
|
from interact import interact as io
|
|
'''
|
|
default_mode = {1:'overlay',
|
|
2:'hist-match',
|
|
3:'hist-match-bw',
|
|
4:'seamless',
|
|
5:'seamless-hist-match',
|
|
6:'raw'}
|
|
'''
|
|
class ConverterMasked(Converter):
|
|
|
|
#override
|
|
def __init__(self, predictor_func,
|
|
predictor_input_size=0,
|
|
output_size=0,
|
|
face_type=FaceType.FULL,
|
|
default_mode = 4,
|
|
base_erode_mask_modifier = 0,
|
|
base_blur_mask_modifier = 0,
|
|
default_erode_mask_modifier = 0,
|
|
default_blur_mask_modifier = 0,
|
|
clip_hborder_mask_per = 0):
|
|
|
|
super().__init__(predictor_func, Converter.TYPE_FACE)
|
|
self.predictor_input_size = predictor_input_size
|
|
self.output_size = output_size
|
|
self.face_type = face_type
|
|
self.clip_hborder_mask_per = clip_hborder_mask_per
|
|
|
|
mode = io.input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless, (5) raw. Default - %d : " % (default_mode) , default_mode)
|
|
|
|
mode_dict = {1:'overlay',
|
|
2:'hist-match',
|
|
3:'hist-match-bw',
|
|
4:'seamless',
|
|
5:'raw'}
|
|
|
|
self.mode = mode_dict.get (mode, mode_dict[default_mode] )
|
|
self.suppress_seamless_jitter = False
|
|
|
|
if self.mode == 'raw':
|
|
mode = io.input_int ("Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
|
|
self.raw_mode = {1:'rgb',
|
|
2:'rgb-mask',
|
|
3:'mask-only',
|
|
4:'predicted-only'}.get (mode, 'rgb-mask')
|
|
|
|
if self.mode != 'raw':
|
|
|
|
if self.mode == 'seamless':
|
|
io.input_bool ("Suppress seamless jitter? [ y/n ] (?:help skip:n ) : ", False, help_message="Seamless clone produces face jitter. You can suppress it, but process can take a long time." )
|
|
|
|
if io.input_bool("Seamless hist match? (y/n skip:n) : ", False):
|
|
self.mode = 'seamless-hist-match'
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
|
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
|
|
|
|
self.use_predicted_mask = io.input_bool("Use predicted mask? (y/n skip:y) : ", True)
|
|
|
|
if self.mode != 'raw':
|
|
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (default_erode_mask_modifier), default_erode_mask_modifier), -200, 200)
|
|
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (default_blur_mask_modifier), default_blur_mask_modifier), -200, 200)
|
|
|
|
self.seamless_erode_mask_modifier = 0
|
|
if 'seamless' in self.mode:
|
|
self.seamless_erode_mask_modifier = np.clip ( io.input_int ("Choose seamless erode mask modifier [-100..100] (skip:0) : ", 0), -100, 100)
|
|
|
|
self.output_face_scale = np.clip ( 1.0 + io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
|
|
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
|
|
|
|
if self.mode != 'raw':
|
|
self.final_image_color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
|
self.alpha = io.input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
|
|
|
|
io.log_info ("")
|
|
self.over_res = 4 if self.suppress_seamless_jitter else 1
|
|
|
|
|
|
#override
|
|
def dummy_predict(self):
|
|
self.predictor_func ( np.zeros ( (self.predictor_input_size,self.predictor_input_size,4), dtype=np.float32 ) )
|
|
|
|
#override
|
|
def convert_face (self, img_bgr, img_face_landmarks, debug):
|
|
|
|
if self.over_res != 1:
|
|
img_bgr = cv2.resize ( img_bgr, ( img_bgr.shape[1]*self.over_res, img_bgr.shape[0]*self.over_res ) )
|
|
img_face_landmarks = img_face_landmarks*self.over_res
|
|
|
|
if debug:
|
|
debugs = [img_bgr.copy()]
|
|
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
|
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
|
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
|
|
|
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
|
|
|
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
|
|
predictor_input_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
|
|
predictor_input_mask_a = np.expand_dims (predictor_input_mask_a_0, -1)
|
|
|
|
predicted_bgra = self.predictor_func ( np.concatenate( (predictor_input_bgr, predictor_input_mask_a), -1) )
|
|
|
|
prd_face_bgr = np.clip (predicted_bgra[:,:,0:3], 0, 1.0 )
|
|
prd_face_mask_a_0 = np.clip (predicted_bgra[:,:,3], 0.0, 1.0)
|
|
|
|
if not self.use_predicted_mask:
|
|
prd_face_mask_a_0 = predictor_input_mask_a_0
|
|
|
|
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
|
|
|
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
|
|
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
|
|
|
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
|
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
|
|
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
|
|
|
|
if debug:
|
|
debugs += [img_face_mask_aaa.copy()]
|
|
|
|
if 'seamless' in self.mode:
|
|
img_face_seamless_mask_aaa = img_face_mask_aaa.copy() #mask used for cv2.seamlessClone
|
|
img_face_seamless_mask_aaa[img_face_seamless_mask_aaa > 0.9] = 1.0
|
|
img_face_seamless_mask_aaa[img_face_seamless_mask_aaa <= 0.9] = 0.0
|
|
|
|
out_img = img_bgr.copy()
|
|
|
|
if self.mode == 'raw':
|
|
if self.raw_mode == 'rgb' or self.raw_mode == 'rgb-mask':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
|
|
if self.raw_mode == 'rgb-mask':
|
|
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
|
|
|
|
if self.raw_mode == 'mask-only':
|
|
out_img = img_face_mask_aaa
|
|
|
|
if self.raw_mode == 'predicted-only':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(out_img.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
|
|
else:
|
|
|
|
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
|
ar = []
|
|
for i in range(1, 10):
|
|
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
|
|
if maxregion.size != 0:
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
lenx = maxx - minx
|
|
leny = maxy - miny
|
|
maskx = ( minx+(lenx/2) )
|
|
masky = ( miny+(leny/2) )
|
|
if lenx >= 4 and leny >= 4:
|
|
ar += [ [ lenx, leny, maskx, masky] ]
|
|
|
|
if len(ar) > 0:
|
|
lenx, leny, maskx, masky = np.mean ( ar, axis=0 )
|
|
|
|
if debug:
|
|
io.log_info ("lenx/leny:(%d/%d) maskx/masky:(%f/%f)" % (lenx, leny, maskx, masky ) )
|
|
|
|
maskx = int( maskx )
|
|
masky = int( masky )
|
|
|
|
lowest_len = min (lenx, leny)
|
|
|
|
if debug:
|
|
io.log_info ("lowest_len = %f" % (lowest_len) )
|
|
|
|
img_mask_blurry_aaa = img_face_mask_aaa
|
|
|
|
if self.erode_mask_modifier != 0:
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
|
if debug:
|
|
io.log_info ("erode_size = %d" % (ero) )
|
|
if ero > 0:
|
|
img_mask_blurry_aaa = cv2.erode(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_mask_blurry_aaa = cv2.dilate(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
if self.seamless_erode_mask_modifier != 0:
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.seamless_erode_mask_modifier )
|
|
if debug:
|
|
io.log_info ("seamless_erode_size = %d" % (ero) )
|
|
if ero > 0:
|
|
img_face_seamless_mask_aaa = cv2.erode(img_face_seamless_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_face_seamless_mask_aaa = cv2.dilate(img_face_seamless_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
img_face_seamless_mask_aaa = np.clip (img_face_seamless_mask_aaa, 0, 1)
|
|
|
|
if self.clip_hborder_mask_per > 0: #clip hborder before blur
|
|
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
|
|
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per )
|
|
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
|
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
|
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
|
|
|
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
|
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
|
img_mask_blurry_aaa *= img_prd_hborder_rect_mask_a
|
|
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
|
|
|
if debug:
|
|
debugs += [img_mask_blurry_aaa.copy()]
|
|
|
|
if self.blur_mask_modifier > 0:
|
|
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
|
if debug:
|
|
io.log_info ("blur_size = %d" % (blur) )
|
|
if blur > 0:
|
|
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
|
|
|
|
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
|
|
|
if debug:
|
|
debugs += [img_mask_blurry_aaa.copy()]
|
|
|
|
if self.color_transfer_mode is not None:
|
|
if self.color_transfer_mode == 'rct':
|
|
if debug:
|
|
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
|
|
|
prd_face_bgr = image_utils.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
|
|
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
|
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
|
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
|
|
|
if debug:
|
|
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
|
|
|
|
|
elif self.color_transfer_mode == 'lct':
|
|
if debug:
|
|
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
|
|
|
prd_face_bgr = image_utils.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
|
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
|
|
|
|
if debug:
|
|
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
|
|
|
if self.mode == 'hist-match-bw':
|
|
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
|
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
if debug:
|
|
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
|
|
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
if self.masked_hist_match:
|
|
hist_mask_a *= prd_face_mask_a
|
|
|
|
hist_match_1 = prd_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
hist_match_2 = dst_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
prd_face_bgr = image_utils.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
|
|
|
|
if self.mode == 'hist-match-bw':
|
|
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
|
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
out_img = np.clip(out_img, 0.0, 1.0)
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
if self.mode == 'overlay':
|
|
pass
|
|
|
|
if 'seamless' in self.mode:
|
|
try:
|
|
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_seamless_mask_aaa*255).astype(np.uint8), (maskx,masky) , cv2.NORMAL_CLONE )
|
|
out_img = out_img.astype(dtype=np.float32) / 255.0
|
|
except Exception as e:
|
|
#seamlessClone may fail in some cases
|
|
e_str = traceback.format_exc()
|
|
|
|
if 'MemoryError' in e_str:
|
|
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
|
else:
|
|
print ("Seamless fail: " + e_str)
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
|
|
|
if self.mode == 'seamless-hist-match':
|
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
|
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
|
|
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
|
|
|
if self.final_image_color_degrade_power != 0:
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
out_img_reduced = image_utils.reduce_colors(out_img, 256)
|
|
if self.final_image_color_degrade_power == 100:
|
|
out_img = out_img_reduced
|
|
else:
|
|
alpha = self.final_image_color_degrade_power / 100.0
|
|
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
|
|
|
if self.alpha:
|
|
out_img = np.concatenate ( [out_img, np.expand_dims (img_mask_blurry_aaa[:,:,0],-1)], -1 )
|
|
|
|
if self.over_res != 1:
|
|
out_img = cv2.resize ( out_img, ( img_bgr.shape[1] // self.over_res, img_bgr.shape[0] // self.over_res ) )
|
|
|
|
out_img = np.clip (out_img, 0.0, 1.0 )
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
return debugs if debug else out_img
|
|
|
|
|