mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
With interactive converter you can change any parameter of any frame and see the result in real time. Converter: added motion_blur_power param. Motion blur is applied by precomputed motion vectors. So the moving face will look more realistic. RecycleGAN model is removed. Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD) Usage: 1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background, other faces should not appear in frames. 2) process "extract images from video data_src.bat" with FULL fps 3) place data_dst.mp4 video of face who will control the src face 4) process "extract images from video data_dst FULL FPS.bat" 5) process "data_src mark faces S3FD best GPU.bat" 6) process "data_dst extract unaligned faces S3FD best GPU.bat" 7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters. 8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness. 9) convert AVATAR.bat 10) converted to mp4.bat updated versions of modules
188 lines
7.8 KiB
Python
188 lines
7.8 KiB
Python
import numpy as np
|
|
|
|
from nnlib import nnlib
|
|
from models import ModelBase
|
|
from facelib import FaceType
|
|
from samplelib import *
|
|
from interact import interact as io
|
|
|
|
class Model(ModelBase):
|
|
|
|
#override
|
|
def onInitializeOptions(self, is_first_run, ask_override):
|
|
if is_first_run or ask_override:
|
|
def_pixel_loss = self.options.get('pixel_loss', False)
|
|
self.options['pixel_loss'] = io.input_bool ("Use pixel loss? (y/n, ?:help skip: n/default ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.")
|
|
else:
|
|
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
|
|
|
|
#override
|
|
def onInitialize(self):
|
|
exec(nnlib.import_all(), locals(), globals())
|
|
self.set_vram_batch_requirements( {4.5:4} )
|
|
|
|
ae_input_layer = Input(shape=(128, 128, 3))
|
|
mask_layer = Input(shape=(128, 128, 1)) #same as output
|
|
|
|
self.encoder, self.decoder, self.inter_B, self.inter_AB = self.Build(ae_input_layer)
|
|
|
|
if not self.is_first_run():
|
|
weights_to_load = [ [self.encoder, 'encoder.h5'],
|
|
[self.decoder, 'decoder.h5'],
|
|
[self.inter_B, 'inter_B.h5'],
|
|
[self.inter_AB, 'inter_AB.h5']
|
|
]
|
|
self.load_weights_safe(weights_to_load)
|
|
|
|
code = self.encoder(ae_input_layer)
|
|
AB = self.inter_AB(code)
|
|
B = self.inter_B(code)
|
|
rec_src = self.decoder(Concatenate()([AB, AB]))
|
|
rec_dst = self.decoder(Concatenate()([B, AB]))
|
|
self.autoencoder_src = Model([ae_input_layer,mask_layer], rec_src )
|
|
self.autoencoder_dst = Model([ae_input_layer,mask_layer], rec_dst )
|
|
|
|
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
|
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMSEMaskLoss(mask_layer, is_mse=self.options['pixel_loss']), 'mse'] )
|
|
|
|
self.convert = K.function([ae_input_layer],rec_src)
|
|
|
|
|
|
if self.is_training_mode:
|
|
t = SampleProcessor.Types
|
|
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
|
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
|
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution':128} ]
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
|
debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ),
|
|
output_sample_types=output_sample_types),
|
|
|
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
|
output_sample_types=output_sample_types)
|
|
])
|
|
|
|
#override
|
|
def get_model_filename_list(self):
|
|
return [[self.encoder, 'encoder.h5'],
|
|
[self.decoder, 'decoder.h5'],
|
|
[self.inter_B, 'inter_B.h5'],
|
|
[self.inter_AB, 'inter_AB.h5']]
|
|
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( self.get_model_filename_list() )
|
|
|
|
#override
|
|
def onTrainOneIter(self, sample, generators_list):
|
|
warped_src, target_src, target_src_mask = sample[0]
|
|
warped_dst, target_dst, target_dst_mask = sample[1]
|
|
|
|
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_mask], [target_src, target_src_mask] )
|
|
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_mask], [target_dst, target_dst_mask] )
|
|
|
|
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
|
|
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][1][0:4] #first 4 samples
|
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
|
test_B = sample[1][1][0:4]
|
|
test_B_m = sample[1][2][0:4]
|
|
|
|
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
|
|
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
|
|
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
|
|
|
|
mAA = np.repeat ( mAA, (3,), -1)
|
|
mAB = np.repeat ( mAB, (3,), -1)
|
|
mBB = np.repeat ( mBB, (3,), -1)
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
st.append ( np.concatenate ( (
|
|
test_A[i,:,:,0:3],
|
|
AA[i],
|
|
#mAA[i],
|
|
test_B[i,:,:,0:3],
|
|
BB[i],
|
|
#mBB[i],
|
|
AB[i],
|
|
#mAB[i]
|
|
), axis=1) )
|
|
|
|
return [ ('LIAEF128', np.concatenate ( st, axis=0 ) ) ]
|
|
|
|
def predictor_func (self, face=None, dummy_predict=False):
|
|
if dummy_predict:
|
|
self.AE_convert ([ np.zeros ( (1, 128, 128, 3) ), dtype=np.float32 ) ])
|
|
else:
|
|
x, mx = self.convert ( [ face[np.newaxis,...] ] )
|
|
return x[0], mx[0][...,0]
|
|
|
|
#override
|
|
def get_ConverterConfig(self):
|
|
import converters
|
|
return converters.ConverterConfigMasked(predictor_func=self.predictor_func,
|
|
predictor_input_shape=(128,128,3),
|
|
predictor_masked=True,
|
|
face_type=FaceType.FULL,
|
|
default_mode=4,
|
|
base_erode_mask_modifier=30,
|
|
base_blur_mask_modifier=0,
|
|
default_erode_mask_modifier=0,
|
|
default_blur_mask_modifier=0,
|
|
)
|
|
|
|
def Build(self, input_layer):
|
|
exec(nnlib.code_import_all, locals(), globals())
|
|
|
|
def downscale (dim):
|
|
def func(x):
|
|
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
|
|
return func
|
|
|
|
def upscale (dim):
|
|
def func(x):
|
|
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
|
|
return func
|
|
|
|
def Encoder():
|
|
x = input_layer
|
|
x = downscale(128)(x)
|
|
x = downscale(256)(x)
|
|
x = downscale(512)(x)
|
|
x = downscale(1024)(x)
|
|
x = Flatten()(x)
|
|
return Model(input_layer, x)
|
|
|
|
def Intermediate():
|
|
input_layer = Input(shape=(None, 8 * 8 * 1024))
|
|
x = input_layer
|
|
x = Dense(256)(x)
|
|
x = Dense(8 * 8 * 512)(x)
|
|
x = Reshape((8, 8, 512))(x)
|
|
x = upscale(512)(x)
|
|
return Model(input_layer, x)
|
|
|
|
def Decoder():
|
|
input_ = Input(shape=(16, 16, 1024))
|
|
x = input_
|
|
x = upscale(512)(x)
|
|
x = upscale(256)(x)
|
|
x = upscale(128)(x)
|
|
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
|
|
y = input_ #mask decoder
|
|
y = upscale(512)(y)
|
|
y = upscale(256)(y)
|
|
y = upscale(128)(y)
|
|
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid' )(y)
|
|
|
|
return Model(input_, [x,y])
|
|
|
|
return Encoder(), Decoder(), Intermediate(), Intermediate()
|