mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
162 lines
No EOL
7 KiB
Python
162 lines
No EOL
7 KiB
Python
from enum import IntEnum
|
|
import cv2
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from pathlib import Path
|
|
|
|
from utils import Path_utils
|
|
from utils.DFLPNG import DFLPNG
|
|
|
|
from .Sample import Sample
|
|
from .Sample import SampleType
|
|
|
|
from facelib import FaceType
|
|
from facelib import LandmarksProcessor
|
|
|
|
class SampleLoader:
|
|
cache = dict()
|
|
|
|
@staticmethod
|
|
def load(sample_type, samples_path, target_samples_path=None):
|
|
cache = SampleLoader.cache
|
|
|
|
if str(samples_path) not in cache.keys():
|
|
cache[str(samples_path)] = [None]*SampleType.QTY
|
|
|
|
datas = cache[str(samples_path)]
|
|
|
|
if sample_type == SampleType.IMAGE:
|
|
if datas[sample_type] is None:
|
|
datas[sample_type] = [ Sample(filename=filename) for filename in tqdm( Path_utils.get_image_paths(samples_path), desc="Loading" ) ]
|
|
|
|
elif sample_type == SampleType.FACE:
|
|
if datas[sample_type] is None:
|
|
datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
|
|
|
|
elif sample_type == SampleType.FACE_YAW_SORTED:
|
|
if datas[sample_type] is None:
|
|
datas[sample_type] = SampleLoader.upgradeToFaceYawSortedSamples( SampleLoader.load(SampleType.FACE, samples_path) )
|
|
|
|
elif sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
|
if datas[sample_type] is None:
|
|
if target_samples_path is None:
|
|
raise Exception('target_samples_path is None for FACE_YAW_SORTED_AS_TARGET')
|
|
datas[sample_type] = SampleLoader.upgradeToFaceYawSortedAsTargetSamples( SampleLoader.load(SampleType.FACE_YAW_SORTED, samples_path), SampleLoader.load(SampleType.FACE_YAW_SORTED, target_samples_path) )
|
|
elif sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
|
if datas[sample_type] is None:
|
|
datas[sample_type] = SampleLoader.upgradeToFaceCloseToSelfSamples( SampleLoader.load(SampleType.FACE, samples_path) )
|
|
|
|
|
|
return datas[sample_type]
|
|
|
|
@staticmethod
|
|
def upgradeToFaceSamples ( samples ):
|
|
sample_list = []
|
|
|
|
for s in tqdm( samples, desc="Loading" ):
|
|
|
|
s_filename_path = Path(s.filename)
|
|
if s_filename_path.suffix != '.png':
|
|
print ("%s is not a png file required for training" % (s_filename_path.name) )
|
|
continue
|
|
|
|
dflpng = DFLPNG.load ( str(s_filename_path), print_on_no_embedded_data=True )
|
|
if dflpng is None:
|
|
continue
|
|
|
|
sample_list.append( s.copy_and_set(sample_type=SampleType.FACE,
|
|
face_type=FaceType.fromString (dflpng.get_face_type()),
|
|
shape=dflpng.get_shape(),
|
|
landmarks=dflpng.get_landmarks(),
|
|
yaw=dflpng.get_yaw_value()) )
|
|
|
|
return sample_list
|
|
|
|
@staticmethod
|
|
def upgradeToFaceCloseToSelfSamples (samples):
|
|
yaw_samples = SampleLoader.upgradeToFaceYawSortedSamples(samples)
|
|
yaw_samples_len = len(yaw_samples)
|
|
|
|
sample_list = []
|
|
for i in tqdm( range(yaw_samples_len), desc="Sorting" ):
|
|
if yaw_samples[i] is not None:
|
|
for s in yaw_samples[i]:
|
|
s_t = []
|
|
|
|
for n in range(2000):
|
|
yaw_idx = np.clip ( i-10 +np.random.randint(20), 0, yaw_samples_len-1 )
|
|
if yaw_samples[yaw_idx] is None:
|
|
continue
|
|
|
|
yaw_idx_samples_len = len(yaw_samples[yaw_idx])
|
|
|
|
yaw_idx_sample = yaw_samples[yaw_idx][ np.random.randint(yaw_idx_samples_len) ]
|
|
if s.filename == yaw_idx_sample.filename:
|
|
continue
|
|
|
|
s_t.append ( yaw_idx_sample )
|
|
if len(s_t) >= 50:
|
|
break
|
|
|
|
if len(s_t) == 0:
|
|
s_t = [s]
|
|
|
|
sample_list.append( s.copy_and_set(close_target_list = s_t) )
|
|
|
|
return sample_list
|
|
|
|
@staticmethod
|
|
def upgradeToFaceYawSortedSamples( samples ):
|
|
|
|
lowest_yaw, highest_yaw = -256, +256
|
|
gradations = 64
|
|
diff_rot_per_grad = abs(highest_yaw-lowest_yaw) / gradations
|
|
|
|
yaws_sample_list = [None]*gradations
|
|
|
|
for i in tqdm( range(0, gradations), desc="Sorting" ):
|
|
yaw = lowest_yaw + i*diff_rot_per_grad
|
|
next_yaw = lowest_yaw + (i+1)*diff_rot_per_grad
|
|
|
|
yaw_samples = []
|
|
for s in samples:
|
|
s_yaw = s.yaw
|
|
if (i == 0 and s_yaw < next_yaw) or \
|
|
(i < gradations-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
|
|
(i == gradations-1 and s_yaw >= yaw):
|
|
yaw_samples.append ( s.copy_and_set(sample_type=SampleType.FACE_YAW_SORTED) )
|
|
|
|
if len(yaw_samples) > 0:
|
|
yaws_sample_list[i] = yaw_samples
|
|
|
|
return yaws_sample_list
|
|
|
|
@staticmethod
|
|
def upgradeToFaceYawSortedAsTargetSamples (s, t):
|
|
l = len(s)
|
|
if l != len(t):
|
|
raise Exception('upgradeToFaceYawSortedAsTargetSamples() s_len != t_len')
|
|
b = l // 2
|
|
|
|
s_idxs = np.argwhere ( np.array ( [ 1 if x != None else 0 for x in s] ) == 1 )[:,0]
|
|
t_idxs = np.argwhere ( np.array ( [ 1 if x != None else 0 for x in t] ) == 1 )[:,0]
|
|
|
|
new_s = [None]*l
|
|
|
|
for t_idx in t_idxs:
|
|
search_idxs = []
|
|
for i in range(0,l):
|
|
search_idxs += [t_idx - i, (l-t_idx-1) - i, t_idx + i, (l-t_idx-1) + i]
|
|
|
|
for search_idx in search_idxs:
|
|
if search_idx in s_idxs:
|
|
mirrored = ( t_idx != search_idx and ((t_idx < b and search_idx >= b) or (search_idx < b and t_idx >= b)) )
|
|
new_s[t_idx] = [ sample.copy_and_set(sample_type=SampleType.FACE_YAW_SORTED_AS_TARGET,
|
|
mirror=True,
|
|
yaw=-sample.yaw,
|
|
landmarks=LandmarksProcessor.mirror_landmarks (sample.landmarks, sample.shape[1] ))
|
|
for sample in s[search_idx]
|
|
] if mirrored else s[search_idx]
|
|
break
|
|
|
|
return new_s |